Chromatic symmetric functions on graphs and polytopes

Seminario de Algebra e Combinatoria, Coimbra

Raúl Penaguião

University of Zurich

June 29th, 2018

The chromatic symmetric function on graphs

A colouring on a graph G is a map $f:V(G)\to\mathbb{N}$. It is proper if $f(v_1)\neq f(v_2)$ when $\{v_1,v_2\}\in E(G)$.

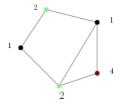


Figure: Example of a proper colouring f of a graph

Set
$$x_f = \prod x_{f(v)}$$
. We have $x_f = x_1^2 x_2^2 x_4$ in the figure.

The chromatic symmetric function on graphs

The chromatic symmetric function (CSF) of G is $\Psi_{\mathbf{G}}(G) = \sum_{f \text{ proper}} x_f$.

Example:

Figure: The line graph P_2 and the path P_3

Their CSF are

$$\Psi_{\mathbf{G}}(P_2) = 2 \sum_{1 \le i < j} x_i x_j, \quad \Psi_{\mathbf{G}}(P_3) = 6 \left(\sum_{1 \le i < j < k} x_i x_j x_k \right) + \left(\sum_{i \ne j} x_i^2 x_j \right).$$

Evaluating $x_1 = \cdots = x_t = 1$ and $x_i = 0$ for i > t we obtain the chromatic polynomial $\chi_G(t)$.

Tree conjecture on graphs

Given the CSF of a graph we can compute the amount of **edges**, **connected components**, decide if it is a **tree** and compute the **degree sequence** for trees, but

Figure: Non-isomorphic graphs with the same CSF¹

Conjecture (Tree conjecture - Stanley and Stembridge)

Any two non-isomorphic trees T_1, T_2 have distinct CSF. Think about the chromatic polynomial

¹Rose Orelanna and Scott

CF on graphs - The kernel problem

Question (The kernel problem on graphs)

Describe all linear relations of the form

$$\sum_{i} a_i \Psi_{\mathbf{G}}(G_i) = 0.$$

Theorem (RP-2017)

The space $\ker \Psi_{\mathbf{G}}$ is spanned by the modular relations and isomorphism relations.

Outline

- Introduction
 - CF on graphs
- Kernel problem on graphs
- CF on polytopes
 - Generalised permutahedra
 - Kernel problem on nestohedra
- Tree conjecture

Graphs terminology

The edge deletion of a graph: $H \setminus \{e\}$.

The edge addition of a graph: $G + \{e\}$.

Modular relations

$$\Psi_{\mathbf{G}}(G) = \sum_{f \text{ proper on } G} x_f \,.$$

Proposition (Modular relations - Guay-Paquet, Orellana, Scott, 2013)

Let G be a graph that contains an edge e_3 and does not contain e_1, e_2 such that the edges $\{e_1, e_2, e_3\}$ form a triangle. Then,

$$\Psi_{\mathbf{G}}(G) - \Psi_{\mathbf{G}}(G + \{e_1\}) - \Psi_{\mathbf{G}}(G + \{e_2\}) + \Psi_{\mathbf{G}}(G + \{e_1, e_2\}) = 0.$$

$$G + \{e_1, e_2\}$$

$$G + \{e_2\}$$

 $G + \{e_1\}$

Modular relations - sketch of proof

Fix a colouring f of our graph G.

Goal: the total contribution of the four graphs cancel out

proper	proper	proper	proper
non-proper	non-proper	non-proper	non-proper
non-proper	? proper	? proper	proper
non-proper	? non-proper	? non-proper	proper

Case 3 is impossible for trivial reasons.

Case 4 is impossible because the extra edge would entail non-properness in the smaller graph.

The kernel problem

For G_1, G_2 isomorphic graphs, we have $G_1 - G_2 \in \ker \Psi_{\mathbf{G}}$. These are called *isomorphism relation*.

Theorem (RP-2017)

The kernel of $\Psi_{\mathbf{G}}$ is generated by modular relations and isomorphism relations.

Let $\mathcal{M}=\langle$ modular relations, isomorphism relations \rangle . Goal: $\ker \Psi_{\mathbf{G}}=\mathcal{M}.$

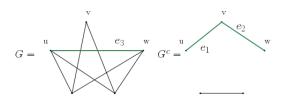
$$e_3 \in G \Rightarrow G - (G + \{e_1\}) - (G + \{e_2\}) + (G + \{e_1, e_2\}) \in \mathcal{M}$$
.

- Take $z=\sum_i G_i a_i$ in the kernel of $\Psi_{\mathbf{G}}$. Goal: by working on $\ker \Psi_{\mathbf{G}}/\mathcal{M}$, show that $z\in \mathcal{M}$.
- Some of the G_i can be rewritten as graphs with more edges (through modular relation). We call them *extendible*.
- The *non-extendible* graphs $\{H_1, H_2, \cdots\}$ are not a lot, and $\{\Psi_{\mathbf{G}}(H_1), \Psi_{\mathbf{G}}(H_2), \cdots\}$ is linearly independent.
- Linear algebra 'magic' ⇒ a theorem is born.

$$e_3 \in G \Rightarrow G - (G + \{e_1\}) - (G + \{e_2\}) + (G + \{e_1, e_2\}) \in \mathcal{M}$$
.

Proposition (Non-extendible graphs)

A graph is non-extendible if and only if any connected component of G^c , the complement graph of G, is a complete graph.



Note: Up to isomorphism, we can identify a partition λ with a non-extendible graph K_{λ}^{c} in such a way $\lambda = \lambda(G^{c})$.

Consequence: Our original z can be rewritten, using modular relation

Consequence: Our original z can be rewritten, using modular relations and isomorphic relations, as

$$z = \sum_{\lambda \in \mathcal{P}_n} K_{\lambda}^c a_{\lambda} \in \ker \Psi_{\mathbf{G}}.$$

So, always working on $\ker \Psi_{\mathbf{G}}/\mathcal{M}$, we have:

$$z = \sum_{\lambda \in \mathcal{P}_n} K_{\lambda}^c a_{\lambda} \in \ker \Psi_{\mathbf{G}} ,$$

Apply $\Psi_{\mathbf{G}}$ to get

$$0 = \sum_{\lambda \in \mathcal{P}_n} \Psi_{\mathbf{G}}(K_{\lambda}^c) a_{\lambda} \Rightarrow a_{\lambda} = 0.$$

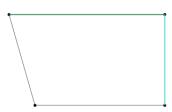
Possible to show: the set $\{\Psi_{\mathbf{G}}(K_{\lambda}^c)\}_{\lambda\in\mathcal{P}_n}$ is linearly independent. So z=0, as desired.

Polytopes

Fix a dimension n. A polytope is a bounded set of the form $\mathfrak{q} = \{x \in \mathbb{R}^n | Ax \leq b\}$.

Given a colouring $f:[n]\to\mathbb{N}$ of the **coordinates**, the face \mathfrak{q}_f is

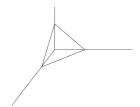
$$\mathfrak{q}_f = \arg\min_{x \in \mathfrak{q}} \sum_{i=1}^n x_i f(i) .$$



Polytopes: Examples

Simplexes and its dilations: Consider $J \subseteq [n]$ non empty.

$$\lambda \mathfrak{s}_J = \operatorname{conv}\{\lambda e_i | i \in J\}.$$



The permutahedron and its generalisations

The n order permutahedron: $\mathfrak{per} = \operatorname{conv}\{(\sigma(1), \dots, \sigma(n)) | \sigma \in S_n\}$. Is (n-1)-dimensional.

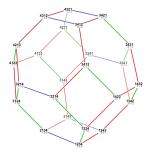


Figure: The 4-permutahedron²

²https://en.wikipedia.org/wiki/Permutohedron

Minkowsky sum

$$A +_M B = \{a + b | a \in A, b \in B\}.$$

 $C := A -_M B \text{ if } A = C +_M B.$

C may not exist but if exists it is **unique** (only for polytopes).

The permutahedron and its generalisations

A generalised permutahedron is a polytope q of the form

$$\mathfrak{q} = \left(\sum_{\substack{J \neq \emptyset \\ a_J > 0}}^{M} a_J \mathfrak{s}_J \right) -_M \left(\sum_{\substack{J \neq \emptyset \\ a_J < 0}}^{M} |a_J| \mathfrak{s}_J \right) \,,$$

A *nestohedron* is only the positive part:

$$\mathfrak{q} = \sum_{\substack{J \neq \emptyset \\ a_J > 0}}^M a_J \mathfrak{s}_J \,.$$

Generalised permutahedra - Examples

The *J*-simplex, for $J \subseteq \{1, \dots, n\}$: $\mathfrak{s}_J = \operatorname{conv}\{e_j | j \in J\}$ and its dilations.

The permutahedron

$$\mathfrak{per} = \operatorname{conv}\{(\sigma(1), \dots, \sigma(n)) | \sigma \in S_n\}.$$

is also given as

$$\mathfrak{per} = \sum_{i \leq j}^M \mathfrak{s}_{\{i,j\}} \,.$$

Chromatic function and zonotopes

We define the chromatic quasisymmetric function (CF) as

$$\Psi_{\mathbf{GP}}(\mathfrak{q}) = \sum_{\mathfrak{q}_f = \mathrm{pt}} x_f \,.$$

Given a graph G, its zonotope is defined as

$$Z(G) = \sum_{e \in E(G)}^{M} \mathfrak{s}_e.$$

These are all Hopf algebra morphism, so

$$\Psi_{\mathbf{G}} = \Psi_{\mathbf{GP}} \circ Z$$
.

Faces of nestohedra

Proposition (Modular relations on nestohedra)

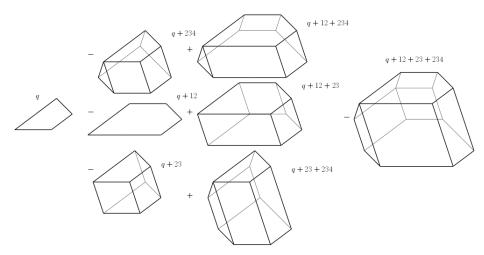
Consider a nestohedron \mathfrak{q} , $\{B_j|j\in T\}$ a family of subsets on $\{1,\cdots n\}$ and $\{a_j|j\in T\}$ some positive scalars. Suppose "some magic"

happens. Then,
$$\sum_{T\subseteq J} (-1)^{\#T} \, \Psi_{\mathbf{GP}} \left[\mathfrak{q} +_M \sum_{j\in T} a_j \mathfrak{s}_{B_j} \right] = 0.$$

Additionally, there are also the so called **simple relations**, that describe precisely when two different nestohedra are combinatorially equivalent (i.e. have the same face structure, etc.).

Faces of nestohedra

An example of a modular relation:



K_{π}^{c} parallel and conclusion of proof

Theorem (RP 2017)

The modular relations, the isomorphism relations and the simple relations span the kernel of the restriction of Ψ_{GP} to the nestohedra.

Tree conjecture on graphs

The following:

$$\chi'(G) = \sum_f x_f \prod_i q_i^{\# \text{ monochromatic edges in } f \text{ of colour } i}$$

is a graph invariant, where the sum runs over all colourings. If we consider the projection of this invariant modulo the relations

$$q_i(q_i-1)^2=0\,,$$

then the modular relations are in $\ker \chi'$. We obtain

$$\ker \Psi_{\mathbf{G}} = \ker \chi'$$
.

Conjecture (Tree conjecture - χ' formulation)

Any two non-isomorphic trees T_1, T_2 have distinct χ' .

Further questions

- From nestohedra to generalised permutahedra?
- The image of the CF on graphs $\Psi_{\mathbf{G}}$ is spanned by $\{\Psi_{\mathbf{G}}(K_{\lambda}^{c})\}_{\lambda}$, which forms a basis of $\operatorname{im}\Psi_{\mathbf{G}}$. Combinatorial meaning of the coefficients?

Thank you

