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a species in combinatorics is a mapping h : I 7→ {combinatorial structures on I}
examples of species in combinatorics: graphs Gr with vertex set I , generalized permuta-hedra in RI , matroid structures on I , permutations of the set I
species can be endowed with a product and a coproduct. in a bimonoid these satisfy thefollowing:

A

B

µA,B

µA1,B1 ⊗ µA2,B2A1

B2

A2

B1

∆A1,A2
⊗ ∆B1,B2

∆C1,C2

C1

C2

Fig. 1: The commutative diagram axiom
example of a bimonoidal structure on graphs G1, G2, G with vertex set V1, V2 and V = V1 ] V2

µV1,V2(G1, G2) = disjoint union of G1, G2∆V1,V2G = G|V1 ⊗G|V2
Hopf monoid entails an antipode, described succintly in [HM12]:

SI(G) =∑
f ,o

(−1)c(f )G|f ,
summing over all pairs of a flat f of G and an acyclic orientation o of G/f , where c(f ) isthe number of connected components of f . For instance,
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Hopf monoids in species

this is a commutative diagram.This means that compositionsof the depicted maps are in-variant of which path is taken.In this case, when workingwith Hopf monoids in combi-natorial objects, the diagramclaims that breaking objectsappart and merging objectstogether can be done in anyorder one likes.

this is a commutative diagram.This means that compositionsof the depicted maps are in-variant of which path is taken.In this case, when workingwith Hopf monoids in combi-natorial objects, the diagramclaims that breaking objectsappart and merging objectstogether can be done in anyorder one likes.

square diagrams and one-line notation: permutations can be represented pictorically as

Fig. 2: Three permutations π1 = 42531, π2 = 231 and π3 = 2413
restrictions of permutations arise when selecting the permutation corresponding to somecolumns or instance, π1|1,3,5 = π3 and π1|1,2,3,4 = π2
counting restrictions that match a pattern τ defines permutation functions pτ : S→ Z

for example pπ2(π1) = 4, pπ3(π1) = 1 and pπ1(π3) .
an unnexpected relation on pattern functions arises on the pointwise product:

pτ1pτ2 =∑
σ

(
σ

τ1, τ2
)

pσ ,

where the coefficients ( σ
τ1,τ2

) are the quasi-shuffle signatures (QSS) of τ1, τ2 into σ
for example: p12p1 = 3p123 + 2p132 + 2p213 + p231 + p312 + 2p12 .

p12(π1)p1(π1) = 3× 5 = 3× 0 + 2× 1 + 2× 1 + 4 + 2× 3= 3p123(π1) + p132(π1) + 2p213(π1) + p231(π1) + p312(π1) + 2p12(π1) .this allows us to define the permutation pattern algebra A(Per) = span{pπ|π ∈ P}.
the permutation pattern algebra is free commutative generated by
Lyndon permutations

theorem [V14]

permutation pattern Hopf algebras
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reciprocity results in light of an antipode formulaan antipode on a Hopf algebra is a map S : H → H that is anti-commutative, preservesdegree and is preserved under Hopf algebra morphisms. If χ : H → K[x ] is a Hopf al-gebra morphism (think chromatic polynomials on graphs, for instance) then the antipodecommutes with the morphism: χG(−x) = χS(G)(x).
χ a b c (−x) = −4χ a b c (x) + 2χ a b c (x)− 2χ a b c (x)− χ a b c (x)as a consequence we recover a long standing beautiful reciprocity result from [S73]

χG(−1) = (−1)|V (G)|#{acyclic orientations of G}
the permutation pattern Hopf algebra A(Per) has no non-trivial Hopfalgebra morphism to K[x ]
Negative result

cancellation-free antipode formulas in Hopf algebras

this result can be ex-tended to many co-commutative patternHopf algebras.
this result can be ex-tended to many co-commutative patternHopf algebras.

an interlacing quasi-shuffle signature of σ from π1, . . . , πk is a QSS of σ from π1, . . . , πksuch that no two patterns of consecutive permutations πi, πi+1 arise diagonally in σ[
σ

π1, . . . , πk
] = ∣∣∣{interlacing QSS of σ from π1, . . . , πk}∣∣∣ .

S(pπ) =∑
σ
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σ

π1, . . . , πk
]
pσ

Fig. 3: Left: the only non-interlacing quasi-shuffle of 132 from 1, 21. Right: a QSS.
S(p132) = S(p1⊕21) = p132 + p213 + 2p231 + 2p312 + 3p321 + 2p21 .

cancellation-free antipode formula for permutations

this formula also works for other pattern algebras, like packed wordsthis formula also works for other pattern algebras, like packed words

n - parking functions are sequences a1 . . . an of length n containing numbers in {1, . . . , n}such that after reordering in increasing order we have ai ≤ i.there are (n+ 1)n−1 parking functions.
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Fig. 4: A correspondence between parking functions and labelled Dyck paths allows us to see parkingfunctions with labelling set Iwith this we can count patterns in parking functions
p11(131) = 1, p21(113) = 0, p21(131) = 1

other pattern algebras - parking functions

Parking functions Hopf algebras

parking functions arise as Hopf algebras in [NT03], here we present a new Hopf
algebra structure in parking functionsParking functions Hopf algebras
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Pattern Hopf algebrasmost pattern Hopf algebras are free. It is conjectured that all such Hopf algebras arefree, and there are some partial results towards this conjecture.
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