Antipode formulas for pattern Hopt algebras
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Hopf monoids in species cancellation-free antipode formulas in Hopf algebras

a species in combinatorics is a mapping h : I — {combinatorial structures on /} reciprocity results in light of an antipode formula
examples of species in combinatorics: graphs Gr with vertex set /, generalized permuta- an antipode on a Hopf algebra is a map S : H — H that is anti-commutative, preserves
hedra in R/, matroid structures on /, permutations of the set |/ degree and is preserved under Hopf algebra morphisms. If ¥ : H — K|x]| is a Hopf al-

species can be endowed with a product and a coproduct. in a bimonoid these satisfy the gebra morphism (think chromatic polynomials on graphs, for instance) then the antipode
following: commutes with the morphism: xg(—x) = xs(G)(x).

this is a commutative diagram.
This means that compositions Xo v o(=x) = _4X,a b ,C(X) + 2)(;er .b_ff(x) - 2Xj%_.b .C(X) — X» v <(X)
of the depicted maps are in-
variant of which path is taken.

In this case, when working V(G)] _ . .
with Hopf monoids in combi- xc(—1) = (1) #{acyclic orientations of G}

as a consequence we recover a long standing beautiful reciprocity result from [S73]

this result can be ex-
tended to many co-
commutative pattern
Hopf algebras.

natorial objects, the diagram

claims that breaking objects Negative result
appart and merging objects

together can be done in any the permutation pattern Hopf algebra A(Per) has no non-trivial Hopf
OISR algebra morphism to K[x]

Fig. 1: The commutative diagram axiom

example of a bimonoidal structure on graphs Gq, Gy, G with vertex set V4, Vo and V =V, 48 V)

vy, v,(Gr, Go) = disjoint union of Gy, Gy
Ay, v,G = Gly, ® Gy,
Hopf monoid entails an antipode, described succintly in [HM12]: cancellation-free antipocle formula for perm utations

sia =Y (-nay,

fo an interlacing quasi-shuffle signature of o from smq,..., 7 is a QSS of o from 4, ..., 7k

such that no two patterns of consecutive permutations s;, 7t; 11 arise diagonally in o
summing over all pairs of a flat f of (G and an acyclic orientation o of G/, where c(f) is

the number of connected components of f. For instance, o Y ]
= [{interlacing QSS of o from m1,..., 7} -
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square diagrams and one-line notation: permutations can be represented pictorically as ( \Ql

Fig. 3: Left: the only non-interlacing quasi-shuffle of 132 from 1,21. Right: a QSS.

5(p132) = S(P1g21) = P132 + P213 + 2p231 + 2p312 + 3p321 + 2p21 -

this formula also works for other pattern algebras, like packed words

Fig. 2: Three permutations iy = 42531, 7, = 231 and 3 = 2413 Otl‘]er I)atterr‘ algelj ras - I)a Iﬂl(ir‘g fLI n CtiO ns
restrictions of permutations arise when selecting the permutation corresponding to some

columns
n - parking functions are sequences a1 ...ap of length n containing numbers in {1, . n}

_ o . . . such that after reordering in increasing order we have a; < i.
counting restrictions that match a pattern v defines permutation functions p;: 6 — Z there are (n + 1)17—1 parking functions

or instance, 511|135 = 713 and |1 234 = 7

for example px, (1) =4, pas(m) =1 and py,(73) .

an unnexpected relation on pattern functions arises on the pointwise product: > 25130 <*+— 31411

g
PPt = E ( )Par

T, T
— \T1, 2

where th fficient ° ) are th l1asi-shuffle signatur f 1, In .
ere the coefficients (71,72) are the quasi-shuffle signatures (QSS) of 71, 7p into o Restriction to

{2,3,4}

for example: p1op1 = 3p123 + 2p132 + 2p213 + P231 + P312 + 2P12 -
P12(m1)p1(m) =3 x5=3x04+2x1T+2x14+4+2x%x3

= 3p123(7m1) + p132(711) + 2p213(T1) + p231(7T1) + p312(7m1) + 2p12(7T1) -
- «—> pp <— 121

this allows us to define the permutation pattern algebra A(Per) = span{px|7t € P} ,

theorem [V14]

Fig. 4: A correspondence between parking functions and labelled Dyck paths allows us to see parking
the permutation pattern algebra is free commutative generated by functions with labelling set |/

Lyndon permutations : . . . .
with this we can count patterns in parking functions

Patt p11(131) =1, p21(113) =0, p21(137) =1
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