Probability 1 - Ex. 1 Solution
(1) $X \sim \operatorname{Bin}(n, p) \quad Y \sim \operatorname{Ber}(x / n)$
(a) Describe the law of Y
Y is a riv. supported in $\{0,1\}$. It suffices to compute $\mathbb{P}(Y=1)$

$$
\begin{aligned}
& \mathbb{P}(Y=1)=\sum_{j=0}^{n} \mathbb{P}(Y=1 \mid X=j) \mathbb{P}(X=j)=\sum_{j=0}^{n} \frac{j}{n}\binom{1}{j} p^{j}(1-p)^{n-j} \\
& =\sum_{j=1}^{n}\binom{n-1}{j-1} p^{j-1}(1-p)^{(1-1)-(6-1)} \cdot p= \\
& =p \underbrace{\sum_{i=0}^{n-1}\binom{n-1}{i} p^{i}(1-p)^{(n-1)-i}}_{(p+(1-p))^{n-1}=1^{n-1}=1}=p
\end{aligned}
$$

So $\quad P(Y=1)=P, \quad P(Y=0)=1-P \quad$ and

$$
Y \sim \operatorname{Ber}(p)
$$

(b) $\mathbb{E}[x \mid y=1]=\sum_{j=0}^{n} \mathbb{P}(x-j \mid y=1) \cdot j=$

$$
\begin{align*}
&=\sum_{j=0}^{n} \mathbb{P}(Y=1 \mid X=j) \frac{\mathbb{P}(X=j)}{\mathbb{P}(Y=1)} \cdot j=\sum_{j=0}^{n} \frac{j}{n} \frac{(\hat{j}) P^{j}(n-p)^{n-j}}{P} j \\
& \hat{P} \\
& \mathbb{P}(A \mid B)=\mathbb{P}(B \mid A) \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \quad=\sum_{i=0}^{n}\binom{n-1}{i} p^{i}(1-P)^{(n-1)-(i-1)}(i+1)
\end{align*}
$$

Let $Z \sim \operatorname{Bin}(n-1, p)$. Then $\mathbb{E}[Z+1]=\oplus$ O_{n} the other hand, $E[Z+1]=(n-1) p+1$.

So $\mathbb{E}[X \mid Y=1]=(n-1) p+1$

Recall that $\mathbb{E}[\mathbb{E}[x \mid y]]=\mathbb{E}[x]$

$$
\Rightarrow \mathbb{E}[x \mid y=0] \mathbb{P}(y=0)+\mathbb{E}[x \mid y=1] \mathbb{P}(y=1)=[\mathbb{E}[x] .
$$

Since $\mathbb{E}[x \mid y=1]=n p+1, \quad \mathbb{P}(y=1)=p, \quad \mathbb{P}(y=0)=1-p$ and $\mathbb{E}[x]=n_{p}$, we have

$$
\begin{aligned}
& \mathbb{E}[X \mid Y=0]=\frac{n p-p((n-1) p+1)}{1-p}=\frac{n p-n p^{2}-p+p^{2}}{1-p}=2 p-p \\
& \mathbb{E}[X \mid Y=0]=(n-1) p
\end{aligned}
$$

Conclusion: $\mathbb{E}[X \mid Y]=(n-1) p+Y$
(2)

$$
\begin{aligned}
& X, Y \sim \operatorname{Unif}(\{1, \ldots, 6\}) \\
& X \Perp Y
\end{aligned}
$$

$$
S=X+Y
$$

Obs 1: If $A \| B$ are discrete riv, then $\mathbb{E}[A \mid B]=\mathbb{E}[A]$

Pry: $\mathbb{E}[A \mid B=j]=\sum_{i \in \operatorname{Rayje}(A)}^{\mathbb{P}}(A=i / B=\delta) \cdot i$

$$
=\sum_{i \in \operatorname{Rag}(A)} \mathbb{P}(A=i)_{i}=\mathbb{E}[A]
$$

Obs 2: A discrete riv. Then $\mathbb{E}[A \mid A]=A$

Prog: $\mathbb{E}[A \mid A=j]=\sum_{i \in \operatorname{Ramgo}(A)} \mathbb{P}(A=i \mid A=j) \cdot i=\mathbb{P}(A=j \mid A=j) \cdot j=j$
Obs 3: If X, Y_{1}, Y_{2} are discrete riv. then

$$
\mathbb{E}\left[a Y_{1}+b Y_{2} \mid X\right]=a \mathbb{E}\left[Y_{1} \mid X\right]+b \mathbb{E}\left[Y_{2} \mid X\right]
$$

Prog: : $a \mathbb{E}\left[Y_{1} \mid X=j\right]+b \mathbb{E}\left[Y_{2} \mid X=j\right]=$

$$
\begin{aligned}
& a \sum_{i \in \operatorname{Ragec}\left(y_{3}\right)} \mathbb{P}\left[Y_{1}=i_{1} \mid X=j\right]+b \sum_{i_{2} \in R_{\text {ale }}\left(r_{2}\right)} i_{2} \mathbb{P}\left(Y_{2}=i_{2} \mid x=j\right) \\
& =\sum_{\substack{\left.i_{1} \in \operatorname{Rage} e \\
i_{2} \in r_{1}\right)}}\left(a i_{1}+b i_{2}\right) \mathbb{(y _ { 2 })} \boldsymbol{P}\left(Y_{1}=i_{2}, y_{2}=i_{2} \mid x=j\right) \\
& =\sum_{i \in \operatorname{Raye}\left(a Y_{1}+b Y_{2}\right)} i \sum_{\begin{array}{c}
i_{1} \in \operatorname{Range}\left(Y_{1}\right) \\
i_{2} \in \operatorname{Rang}\left(Y_{2}\right)
\end{array}} \mathbb{P}\left(Y_{1}=i_{1}, Y_{2}-i_{2} \mid X=j\right) \\
& =\sum_{i \in \text { Rage }\left(a Y_{1}+b Y_{2}\right)} \quad \mathbb{P}\left(a Y_{1}+b Y_{2}=i \quad \mid X=j\right)=\mathbb{E}\left[a Y_{1}+b y_{2} \mid X=j\right]
\end{aligned}
$$

It follow from obs 3 that $E[s \mid x]=E[x \mid x]+E[y \mid x]$

$$
=x+7 / 2
$$

Obs 4: If X, Y, S are as given in $E \times 2$, and y

$$
\begin{aligned}
& \mathbb{P}(S=i) \neq 0 \\
&\mathbb{P}(X-Y=j) S=i)=\frac{\mathbb{P}\left(X=\frac{i+j}{2}, Y=\frac{i-j}{2}\right)}{\mathbb{P}(S=i)}=\frac{\mathbb{P}\left(X=\frac{i+j}{2}\right) \mathbb{P}\left(Y=\frac{i-j}{2}\right)}{\mathbb{P} \mid S=i)} \\
&=\frac{\mathbb{P}\left(X=\frac{i-j}{2}\right) \mathbb{P}\left(Y=\frac{i+j}{2}\right)}{\mathbb{P}(S=i)}=\cdots=\mathbb{P}(X-Y=-j \mid S=i) \\
& X \text { Y have the }
\end{aligned}
$$

It follows that $\mathbb{E}[X-Y \mid S=i]=0$, $S \mathbb{E}[X \mid S]=[\mathbb{E}[Y / S]$
But $\mathbb{E}[x \mid s]+\mathbb{E}[y / s]^{\prime}=\mathbb{E}[x+y / s] \stackrel{\prime}{=} S$
So $\quad \mathbb{E}[x \mid s]=\mathbb{E}[y / s]=\frac{1}{2} S$
(3) a) If X is a step function,
then in X is finite (in fact, it hes p to $2^{\text {th man g }}$ elements)
Let in $X=\left\{a_{1}, \ldots, a_{j}\right\}$ and define $A_{i}=X^{-1}\left(\left\{a_{i}\right\}\right) \in \Gamma(Y)$, because X is $\nabla(Y)$-measurable.

Clearly $X=\sum_{i=1}^{\ell} a_{i} 1 \|_{A_{i}}$, and $A_{i} \neq \phi$ for any i.
By definition of $\nabla(Y)$, there are $\left.B_{1}, \ldots, B_{j}\right\}$ Bore obstet of R st.

$$
\left.A_{i}=Y^{-1} B_{i}\right)
$$

Because the $\left\{A_{i}\right\}_{i}$ are dojoint, we have that the $\left.B i\right\}$: are also disjoint, as $B_{i} \cap B_{j} \subseteq Y\left(A_{i} \cap A_{j}\right)=\varnothing$ for ii. colon a sot! Bod
We construct $f: \mathbb{R} \rightarrow \mathbb{R}$ explicitly:
Define $f\left(B_{i}\right):=a_{i}, \quad f(x)=0$ for $x \in \bigcap_{i=1}^{e} B_{i}^{C}$ Because each B_{i} is a Bard set f is measurable. Because the family $\left\{B_{i}\right\}_{i}$ is a dixpint over $f \mathbb{R}, f$ is unique and well defined.

Finally, if $X(\omega)=a_{i}, \quad \omega \in A_{i} \quad$ so

$$
f(Y(u)) \in f\left(B_{i}\right)=a_{i} \text { so } X=f(Y)_{\text {回 }}
$$

(b) Let X_{n} be a step function approximation of X st. $x_{n} \rightarrow X$ point wise (sure carrigence) Fox instance, we can tale $X_{n}:=\left[2^{n} \min (X, n)\right] \frac{1}{2^{n}}$ We con directly observe the $X_{n} \nearrow \times$ point wise, that is

$$
\begin{aligned}
& X_{n}(\omega) \leqslant X_{n+1}(\omega) \quad \forall n \geqslant 0 \quad \omega \in \Omega \\
\cdot & \lim _{n \rightarrow+\infty} X_{n}(\omega)={ }^{n} \quad
\end{aligned}
$$

Also, X_{n} is dearly a step function, as it only tatties values in $\left\{\left.\frac{k}{2^{n}} \right\rvert\, k=0,1, \ldots, 2^{n} \times n\right\}$.

Finally, X_{n} is $\nabla(Y)$-measurable because

$$
\begin{aligned}
& \left\{x_{n}=\frac{r}{2^{n}}\right\}=\left\{x-\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)\right\} \text { for } r<2^{n} \times n \\
& \left\{x_{n}=n\right\}=\{x \in[n,+\infty)\}>\nabla(y)
\end{aligned}
$$

because X os $\nabla(Y)$-measurable.
Let $X_{n}=f_{n}(Y)$. Because $X_{n} \nearrow X$, then $f_{n}(x) \leqslant f_{a+1}(x)$ for any $x \in$ in Y. This agings $f=\lim _{1} f_{n}$. Borel-measurable such that

$$
f(y)=X B
$$

(c) Let $X^{+}=\max (0, X) \quad \nabla(Y)$-maarucable funds.

$$
\begin{aligned}
& X^{-}=\max (0,-x) \\
& V=V^{+}-x^{-}
\end{aligned}
$$

Then $x^{+}, x^{-} \geqslant 0$ so there is f^{+}, f^{-}st.

$$
f^{+}(Y)=X^{+}, \quad f^{-}(Y)=X^{-} .
$$

if $f=f^{+}-f^{-}$we have $f(y)=X$. It suffices to argue that f is Borel-measurable.

For that, it is enough to show that $g^{-1}(a,+\infty) \in B(\mathbb{R})$ for $a \geqslant 0$, and that $\beta^{-1}(-\infty, b) \in \beta(\mathbb{R})$ fo $b \leq 0$.

Note that $\delta^{-1}(a,+\infty)=\left(\delta^{+}\right)^{-1}(a,+\infty) \in \beta(\mathbb{R})$ because f^{+}, δ^{-}we

$$
f^{-1}(-\infty, b)=\left(f^{-1}\right)^{-1}(-\infty, b) \in B(\mathbb{R})
$$

meas unable by hypothesises.
Ex 4
(a) x satisfies both $x \in \mathcal{L}$

$$
\|x-x\|>0
$$

Further, if any $y \in \mathcal{L}$ is set. $\|y-x\| \leqslant 0$, then by the axioms of the nome, $y-x=0$, so $y=x$.

Then $x=\pi x$
(b) From (a) and because $\pi x \in L, \pi^{2} x=\pi x$.
(c) Part 1: $\forall y \in h, \quad\left\langle y, \pi_{x}\right\rangle=\langle y, x\rangle$ (\#

Let $y \in R$ be generic, and consider $\alpha \in \mathbb{R}$. We have

$$
\begin{equation*}
\left\|\left(\pi_{x}-x y\right)-x\right\|^{2} \geqslant\left\|\pi_{x}-x\right\|^{2} \tag{1}
\end{equation*}
$$

But $\left\|\left(\pi_{x}-\alpha y\right)-x\right\|^{2}=\left\langle\left(\pi_{x}-x\right)-\alpha y,\left(\pi_{x}-x\right)-\alpha y\right\rangle$

$$
=\left\langle\pi_{x}-x, \pi_{x-x}\right\rangle-2 \propto\left\langle\pi_{x}-x, y\right\rangle+\alpha^{2}\langle y, y\rangle
$$

Using this in (1) gives us

$$
\begin{align*}
& \left\langle\pi x-x, \pi_{x-x}\right\rangle-2 \propto\left\langle\pi_{x}-x, y\right\rangle+\alpha^{2}\langle y, y\rangle \geqslant\left\|\pi_{x}-x\right\|^{2} \\
& \Rightarrow \alpha^{2}\langle y, y\rangle-2 \alpha\left\langle\pi_{x}-x, y\right\rangle \geqslant 0 \tag{2}
\end{align*}
$$

So either $y=0$ or this is a quadratic inequality If $y=0, *$ trivially holds
If $y \neq 0$, take $\alpha=\frac{\langle\pi x-x, y\rangle}{\langle y, y\rangle}$ in (2) to gt t

$$
\begin{aligned}
& \quad \frac{\langle\pi x-x, y\rangle^{2}}{\langle y, y\rangle}-2 \frac{\langle\pi x-x, y\rangle^{2}}{\langle y, y\rangle} \geqslant 0 \\
& =D \quad \frac{\langle\pi x-x, y\rangle^{2}}{\langle y, y\rangle} \leqslant 0 \Rightarrow\langle\pi x-x, y\rangle=0
\end{aligned}
$$

which is equivalent to (*) IS
Rem: It follows that $\langle\pi x-x, y\rangle=0 \quad \forall y \in R$, recovering Part 2 Uniqueness Prop 2.7

Let $a \in R$ such that $\quad \forall y \in R,\langle a, y\rangle=\langle x, y\rangle$. Then $\langle u, y\rangle=\left\langle\pi_{x}, y\right\rangle \quad \forall y \in \mathcal{L}$, by the above. Pick $y=\pi x-a$ to obtain

$$
\begin{aligned}
& \left\langle a, \pi_{x}-a\right\rangle=\left\langle\pi_{x}, \pi_{x}-a\right\rangle \Leftrightarrow\left\langle\pi_{x}-a, \pi_{x}-a\right\rangle=0 \\
\Leftrightarrow & \left\|\pi_{x}-a\right\|^{2}=0 \Leftrightarrow \pi_{x}=a
\end{aligned}
$$

Concluding the uniqueness. B
(d) If $x \in L^{\perp}$, by (c) we have that

$$
\begin{aligned}
& \left\|\pi_{x}\right\|^{2}=\left\langle\pi_{x}, \Pi_{x}\right\rangle=\left\langle\pi_{x}, x\right\rangle=0 \\
& \text { So } \pi_{x}=0 \quad 0 \quad x \in \mathcal{L}^{\top} \\
& \text { So }
\end{aligned}
$$

Last modified: 13:54

