Probability 2-Ex 0 Solution
E×1
(a)

$$
\begin{aligned}
0.4 & +0.2+0.1+a+b+c=1 \Rightarrow a+b+c=0.3 \\
\mathbb{E}[x] & =0.4+2 \times 0.2+3 \times 0.1+4 a+5 b+6 c \\
& =0.4+0.4+0.3+9(a+b+c)+b+2 c \\
& =2.3+b+2 c=2.3+(b+c)+c \leq 2.3+0.3+0.3=2.9
\end{aligned}
$$

False
(b) False
(c) No
(d)

$$
\begin{aligned}
& \mathbb{E}[x]=2.3+b+2 c \\
& a+b+c=b+2 c=0.3 \\
& \text { So } \mathbb{E}[x]=2.6 .
\end{aligned}
$$

$E \times 2$
(a)

$$
\begin{aligned}
& \mathbb{P}(X=1)=\mathbb{T}\left(\bigcup_{y \in[0,3} X=1 \& Y=y\right)= \\
& =\sum_{j=1}^{n} \mathbb{P}\left(X=1 \quad \& \quad Y \in\left[\frac{j-1}{n}, \frac{j}{n}\right)\right) \\
& =\sum_{j=1}^{n} \mathbb{P}\left(Y \in\left[\frac{j-1}{n}, \frac{j}{n}\right)\right) \cdot \mathbb{P}\left(X=1 \left\lvert\, Y \in\left[\frac{j-1}{n}, \frac{j}{n}\right)\right.\right) \\
& \leqslant \sum_{j=1}^{n} \frac{1}{n} \times \frac{j}{n}=\frac{1}{n^{2}} \sum_{j=1}^{n} j=\frac{n(n-1)}{2 n^{2}} \xrightarrow[n \rightarrow+\infty]{ } \frac{1}{2}
\end{aligned}
$$

Simuilarly, $\mathbb{P}(X=1)=\sum_{j=1}^{n} \mathbb{P}\left(Y \in\left[\frac{j-1}{n}, \frac{j}{n}\right)\right) \cdot \mathbb{P}\left(X=1 \left\lvert\, Y \in\left[\frac{j-1}{n}, \frac{j}{n}\right)\right.\right)$

$$
\geqslant \sum_{j-1}^{n} \frac{1}{n} \times \frac{j-1}{n}=\frac{1}{n} \sum_{j=1 j-1}^{n}=\frac{n(n-1)}{2 n^{2}} \rightarrow \frac{1}{2}
$$

So $\mathbb{P}(x=1)=1 / 2$
Other way of Gmpoting $\mathbb{P}(X=1)$

$$
\left.\mathbb{P}(X=1)=\int_{1} \mathbb{P}(X=1 \mid Y=y) f_{y} \mid y\right) d y
$$

$$
=\int_{0}^{1} y d y=\frac{1}{2}
$$

Note: these two technigues we essencially the same
(b) Because Y is a continuous r.v., we have $\mathbb{P}(Y=1)=0$.

So $\mathbb{P}(Y=1 \mid X=1)=\mathbb{P}(X=1 \mid Y=1) \frac{\mathbb{P}(Y=1)}{\mathbb{P}(X=1)}=1 \times \frac{0}{1 / 2}=0$
(c)

$$
\begin{aligned}
& \mathbb{P}(Y \geqslant 0.75 \mid x=1)=\frac{\mathbb{P}(Y \geqslant 0.75 \& x=1)}{\mathbb{P}(x=1)}= \\
& =\int_{0.75}^{1} \mathbb{P}(X=1 \mid Y=y) f_{Y}(0) d y \frac{1}{\mathbb{P}(X=1)}=\int_{0.75}^{1} 1-y \partial y \times 2= \\
& =2\left[y-1 y^{2}\right]_{y=3 / 4}^{y=1}=2\left(1-\frac{1}{2}-\frac{3}{4}+\frac{1}{32}\right)=2-1-\frac{3}{2}+\frac{9}{16} \\
& =-1 / 2+9 / 16=1 / 16
\end{aligned}
$$

Ex3
(a) $Y \sim U_{\text {nif }}(0,1), \quad f_{x}(u)=2 u \oplus$ deridy fundion For $t \in(0,1)$ for $u \in(0,1)$

$$
\begin{aligned}
& \mathbb{P}\left(x^{2} \leq t\right) \underset{\substack{\hat{\lambda} \\
t \geqslant 0}}{ } \underset{\sim}{ } \mathbb{P}(|x| \leq \sqrt{t}) \underset{\substack{\hat{\gamma} \\
x \geqslant 0 \text { a.s }}}{ }=\mathbb{P}(x \leq \sqrt{t}) \\
& =\int_{0}^{\sqrt{t}} 2 u d u \stackrel{\vdots}{=}\left[u^{2}\right]_{u \rightarrow 0}^{u \cdot \sqrt{t}}=\sqrt{t^{2}}=t
\end{aligned}
$$

$\mathbb{P}(Y \leq t)=t \quad$ for $\quad t \in(0,1)$
So $\mathbb{P}\left(x^{2} \leq t\right)=\mathbb{P}(y \leq t)$ is kue.
(b)

$$
\begin{array}{ll}
\mathbb{P}(x \leq t)=\int_{0}^{t} 2 u d u=2 t^{2} & \text { for } t \in(0,1) \\
\mathbb{P}\left(y^{2} \leq t\right)=\int_{0}^{\sqrt{t}} 1 d u=\sqrt{t} & \text { for } t \in(0,1) \\
\end{array}
$$

so $\mathbb{H}(X \leqslant t) \neq \mathbb{H}(Y<t)$ is goral.
is false
(c) We just have information on the law of x^{2} andy, not the full information, so we don't know if $\mathbb{P}\left(x^{2}=4\right)=1$
(d) False, because $X=Y^{2}$ ass. $\Rightarrow X^{(d)} Y^{2}$ but $X^{(d)} \stackrel{(d)}{=} Y^{2}$ is false (see (b))

Ex 4
(a) False Gonider a riv. $X \in(1,+\infty)$ with density

$$
f_{x}(u)=\frac{1}{u^{2}} .
$$

Note the $\int_{1+\infty}^{+\infty} f_{x}(u) d u=\left[-u^{-1}\right]_{1}^{+\infty}=1 \quad$ but

$$
E[x]=\int_{1}^{1+\infty} f_{x}(u) \cdot u d x=\left[\begin{array}{ll}
\ln & u]_{1}^{+\infty}=+\infty .
\end{array}\right.
$$

Let $Y \Perp X$ be st. $\mathbb{P}(y=1)=\mathbb{P}(Y=-1)=\frac{1}{2}$
Then $[\mathcal{E}[X . Y]$ is not well defined.
The expected value of ar.V. X is well define in $\overline{\mathbb{R}}$ when $x \geq 0$ or $x \leq 0$

$$
\cdot \mathbb{E}[1 \times 1]<+\infty \quad\left(\text { that is }, X \in L^{1}\right)
$$

(b) True. This is a consequence of Molder's inequality
(C) True This is a consequence of (b)
(d) Because $x \leq 1$ ass. $\|x\|_{+\infty}=1$ bo $x \in l^{1}, L^{2}, e^{\infty}$
(e) Directly computing
u $\quad\|x\|_{\infty}=\infty \quad\|x\|_{2}=\infty \quad\|x\|_{1}=2$
So $\quad x \in L$, but $x \notin L^{L}, L^{\infty}$
18

$$
\begin{aligned}
& \mathbb{E}[|x|]=\sum_{j=0}^{+\infty} e^{-1} \frac{1}{j!} \cdot j=e^{-1} \sum_{j=1}^{+\infty} \frac{1}{(j-1)!}=e^{-1} \cdot e=1 \\
& \begin{aligned}
\mathbb{E}\left[x^{2}\right] & =\mathbb{E}[x(x-1)+x]= \\
& =e^{-1}\left(\sum_{j=0}^{+\infty} \frac{1}{j!} j(j-1)+\frac{1}{j!} j\right) \\
& =e^{-1}\left(\sum_{j=2}^{+\infty} \frac{1}{(j-2)!}+\sum_{j=1}^{+\infty} \frac{1}{(j-1)!}\right)=2
\end{aligned}
\end{aligned}
$$

$\|X\|_{\infty}=e$ essential supremum of $X=+\infty$
so $x \in h^{1}, h^{2}$ but $x \notin h^{\infty}$.
(g) $\mathbb{E}[|x|]=\sum_{k=1}^{+\infty} \frac{6}{r^{2}} \frac{1}{r_{r}}=+\infty$ So $X \notin L^{1}, L^{2}, L^{\infty}$

Ex 5
(a) $X_{n} \xrightarrow{L^{p}} Y_{\text {if }}\left\|x_{n}-y\right\|_{p} \rightarrow 0$.

$$
\left\|x_{n}-Y\right\|_{p}=\left\|x_{n}\right\|_{p}=\mathbb{E}\left[\left|x_{n}\right|^{p}\right]^{\frac{1}{p}}=\mathbb{E}\left[x_{n}\right]^{\frac{1}{n}}=\frac{?}{n^{n}, \rightarrow 0}
$$

So $X_{n} \xrightarrow{p} Y$ for ag $p \geqslant 1$.
(5) We simply observe that $Y_{n} \sim \operatorname{Ber}(1 / n)$. That is

$$
\begin{aligned}
& \mathbb{P}\left(Y_{n}=1\right)=\mathbb{P}(Y \leq 1 / n)=1 / n \\
& \mathbb{P}\left(Y_{n}=0\right)=\mathbb{P}(Y>1 / n)=1-1 / n
\end{aligned}
$$

From. (a) and the diagram (figure 1), we have that

$$
X_{n} \xrightarrow{L^{0}} Y \quad \Rightarrow \quad X_{n} \xrightarrow[(1)]{(j)} Y
$$

Because $X_{n} \stackrel{(d)}{=} Y_{n}, Y_{n} \xrightarrow{(d)} Y$.
(c) From (a) and the diagram (Figure 1), $X_{n} \xrightarrow{P} Y$
$Y_{n} \xrightarrow{P} Y \quad$ if $\mathbb{P}\left(\left|Y_{n}-Y\right|<\varepsilon\right) \rightarrow{ }_{n} \quad$ for any $\omega>0$.

$$
\mathbb{P}\left(\left|Y_{n}-Y\right|<\varepsilon\right)=\mathbb{P}\left(\left|Y_{1}\right|<\varepsilon\right)=\mathbb{P}\left(\left|Y_{n}\right|=0\right)=1-\frac{1}{n} \rightarrow 1
$$

(d) First, note that $\left|Y_{n}\right| \leq 1$ ass., so Y_{n} is a dominated sequence of riM.

Also, for any $\omega \in \Omega, Y_{n}=0$ whenever $n \geqslant \frac{1}{U(u)}$, by definition of $Y_{n}=11[u \leqslant 1 / n]$.

Since $\mathbb{P}(U=0)=0, \mathbb{P}\left(\lim Y_{n}=Y\right)=1$.
So by the dominated convergence theorem we have that $Y_{n} \xrightarrow{l^{\prime}} Y$.
(e) We use again the DCT. $\left|z_{n}\right| \leqslant 1$ ass ant $z_{n}=\frac{1}{n} z \rightarrow \underset{n}{ } 0$, so $z_{n} \xrightarrow{l^{1}} 0$ and $E\left[z_{n}\right] \rightarrow E[0]=0$.

