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DISCRETE SIGNATURE VARIETIES

CARLO BELLINGERI, RAUL PENAGUIAO

TU Berlin, Max Planck Institute for the Mathematics in Sciences Leipzig

Abstract. Discrete signatures are invariants extracted from a discretized version of
paths that resembles the iterated integral signature of rough paths. In this paper we
study the image of these discrete signatures, the discrete signature variety, and begin a
classification of the primary signatures, elements that play a crutial role in computing
the dimension of the associated Lie algebra. We also present some generators of this
variety and the results of some Macaulay2 code to that effect.

1. Introduction

Signatures of smooth curves x : [0, 1] → R were introduced in [Che57], leading to
revolutionary applications on stochastic analysis with contributions by Lyons, Friz,
Hairer and others, see [LCL07, FV10, FH20].
The discrete counterpart of this invariant is the discrete signature of a time-series,

or iterated sum signature, introduced by [DET20]. When focusing on data that is nat-
urally discrete, several interesting applications of this new invariant arise, of which we
remark signal compression [BBSK+17]. These applications arise from the fact that dis-
crete signatures are invariant under time-warping. That is, data is allowed to “stutter”,
leading nonetheless to the same signature.
The discrete signature is defined for a times series of finite vectors in R

d, and results
in a signature, i.e. an element in the tensor series space T ((Ad)). This tensor space
can be described by an infinite sum indexed on words of monomials. In this way, for
a word p1 • · · · • pl of non-constant monomials pi in K[X1, . . . , Xd] we can define the
corresponding coefficient in the signature of a time-series x = (x1, . . . , xN) as follows:

(1) Sp1•···•pl(x) =
∑

1≤i1<···<il<N

l∏

j=1

pj(xij+1 − xij ) .

We argue that this new tensor space is a very interesting one from the point of view
of statistics and numerical analysis. We will truncate this space and consider only the
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2 DISCRETE SIGNATURE VARIETIES

span of the words with total degree bounded by h, T≤h((Ad)). For instance, at h = 2
we have

S
≤2 = ε+ S

(1) + S
(1,1) + S

(2) ,

where S
(1) are all the signatures of the form St, S

(1,1) are all the signatures of the form
St•u, and S

(2) are all the signatures of the form Stu, for t and u linear monomials.
On this truncated space, we will study the different images of the signature map, the

variety Vd,h,N . This variety is an irreducible algebraic variety that arises from a very
dificult implicitization problem. Part of this paper is studying the limit of this image
when N is very large, which will give us the universal variety. This mimics what
was done for Chen’s signature in [AFS19]. It uses a basis indexed by Lyndon words.
However, these words are skewed with a height function, generalising the original
concept from [CFL58]. These combinatorially skewed Lyndon words arise in several
places of the Hopf algebra landscape, for instance in quasi-symmetric functions (see
[Haz01]) as well as permutations (see [Var14, BP20]) and marked permutations (see
[Pen22]). Our study uses results from Lie algebras put forth in [BFPP22].
The signature of a time-series satisfies the so called quasi-shuffle relations, but the

question stands: does any truncated tensor series satisfying the quasi-shuffle relations
arise from the truncated signature of a time-series? A strategy for establishing precisely
that will be outlined, and as a result we conjecture the dimension of the universal
variety. Specifically, in Lemma 5.4 we relate this with the following equation, which we
will study from an algebraic point of view in Sections 4 and 5.2:

Question 1.1. Fix a time-series length N . For which w ∈ K[X1, . . . , Xd] can we find a
time-series x of length N such that

(2) exp(w) = Φ∗
H(S(x)) ,

where ΦH is the Hofmann isomorphism, a linear map introduced below. Such time-
series x are called primary elements, due to their role in spanning the entire space
of discrete signatures, vide Lemma 5.3.

In Section 5.2 we explicitly state how these relations look like for the case where
h = 3.
This paper also studies the intermediate varieties Vd,h,N . An avatar of these varieties

is presented, where we answer dimension and degree questions for some small cases of
d and h. Noticing that the iterated sums in Eq. (1) are polynomial functions on the
time-series, we leverage computational algebra tools to present Gröbner basis of the
vanishing ideals of the image Vd,h,N , drawing inspiration from algebraic statistics (see
[DSS08]). These vanishing ideals contain the quasi-shuffle relations, but are usually
much larger.
Finally, we discuss the degree problem from the point of view of path recovery.

This traces back to the study in [PSS19], where paths are recovered only knowing its
signature of order three. We establish bounds for the degree of low order signature
varieties. This means that for a set of linear constraints, there is a bounded number of
time-series that have a specific signature.
We now state what we will present in this paper. We start with some preliminaries,

introducing the K-algebras and Lie algebras of interest, as well as the main properties of
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the shuffle relations. We will also present algebraic equations that define the signature
space for small cases in Section 4. Then, in Section 5, we discuss the application of
Chow theorem in the discrete signature varieties. Finally, in Section 5.4, we present an
enumerative result for the dimension of the universal variety.

2. Preliminaries

Combinatorics. For an integer n ≥ 1, write [n] := {1, . . . , n}. Given a countable
alphabet I, a word w = (i1, . . . , in) is an n-tuple of elements in I, for n ≥ 0 integer.
We may write w = i1•· · ·•in for simplicity, and |w| = n is called the length of w. We
denote by W(I) the set of words in I, including the empty word, which we denote ε.
Two words w and v may be concatenated, which we represent by w•v. Furthermore,

we abuse notation and write w• i to convey the concatenation of w with the length
one word (i). An alphabet I may be equipped with a degree map deg : I → Z>0. We
call the sum

∑n

j=1 deg(ij) the height ||w||ht of a word w = i1 • · · · • in. One has that

|w| ≤ ||w||ht on any non-empty word w.
A composition α of an integer k is an n-tuple of positive integers α = (α1, . . . , αn)

such that
∑n

i=1 αi = k. We denote the set of all composition of k by C(k), and
write ℓ(α) = n for the length of the composition. We use the following statistics on
compositions α! :=

∏n

i=1 αi! and Πα :=
∏n

i=1 αi.
Assume now that I is an alphabet with an associative and commutative operation,

which we denote by juxtaposition. If α ∈ C(k) and w = i1 • · · · • ik is a word such
that |w| = k, then we define the contracted word (w)α by multiplying the letters in
w according to α, i.e.

(w)α = τ1 • · · ·•τℓ(α) , with τj := isj+1 · · · isj+αj
,

where sj =
∑j−1

i=1 αi for j = 1, . . . , ℓ(α).
Given a countable set A, a multiset S ⊂ A is a collection of elements in A, allowing

for repetitions. We denote the family of multisets of elements in A by MS0
A. This

includes the empty multiset. We denote MSA := MS0
A \ {∅}. When A = [d], we denote

MS0
A,MSA by MS0

d,MSd, respectively.
The alphabet MSd as a multiset has an associative and commutative operation ⊎, the

union. Note that in the context of multisets, the union counts multiplicity of elements.

Tensor algebras. Let V be a vector space over a charateristic zero field K. We define
T (V ), the tensor algebra, and T ((V )), the tensor series over V as follows:

(3) T (V ) :=

+∞⊕

k=0

V ⊗k T ((V )) :=

+∞∏

k=0

V ⊗k ,

with V ⊗0 := K. By fixing a basis B = {ei : i ∈ I} of V we can write elements of
T (V ) and T ((V )) as finite linear combinations and formal series of elements in W(I),
respectively, via the identification

i1•· · ·•ik = ei1 ⊗ · · · ⊗ eik .

Define the • operation (w, v) 7→ w ⊗ v. It can be seen that this map is well defined
on both T (V ) and T ((V )), because it is locally finite. Both T (V ) and T ((V )) form an
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algebra under •. The algebras (T (V ),•) and (T ((V )),•) are called algebra of tensors

and algebra of tensor series, respectively. We define a bilinear and non-singular
bracket 〈−,−〉 : T ((V ))× T (V ) → K as

(4)

〈
∑

w∈W(I)

αww, v

〉

= αv .

In this way, we can identify T ((V )) with the algebraic dual of T (V ).
Equip the indexing set I of the basis of V with a grading, such that there are finitely

many elements of I with a given degree. Then V becomes a graded vector space, and
we can write V = ⊕h≥0V

h for the corresponding grading. The vector space T (V ) also
inherits a grading, by setting deg(w) = ||w||ht. Define

T h(V ) := span{w ∈ W(I) : ||w||ht = h} , T (V ) =
+∞⊕

h=0

T h(V )

T≤h(V ) = span{w ∈ W(I) : ||w||ht ≤ h} , T>h(V ) = span{w ∈ W(I) : ||w||ht > h}

The vector space T≤h(V ) = T (V )/T>h(V ) is called the space of truncated tensors.

Since T>h(V ) is a • ideal, the corresponding truncated tensor product is well defined
on the quotient. We write •h for the product on the quotient. We always have the
isomorphism

T≤h(V ) ∼= T≤h
(
V ≤h

)
,

where V ≤h = ⊕h
k=0V

k. These vector spaces are all finite dimensional.
The same truncation procedure applies to T ((V )) and we obtain a vector space which

is isomorphic to T≤h(V ). For sake of simplicity, we will denote this vector space with
the same notation T≤h(V ).

Shuffle and quasi-shuffle Hopf algebras. Fix d ≥ 1 integer, and consider henceforth
V = Ad = K[X1, . . . , Xd]/{constant polynomials} as our vector space of interest, on which we
study its tensor algebra and tensor series.
The vector space Ad has a basis of non-constant monomials. These are identified

with MSd. We abuse notation and refer to a multiset I ∈ MSd as a monomial in the
variables X1, . . . , Xd. For example, we identify the monomial X2

1X2 with the multiset
112. This abuse of notation extends to the evaluation of a monomial, thus writing
112(y1, y2, y3) = y21y2. To distinguish elements of the alphabet MSd and scalars in Z,
we use typewritter typeset for multisets. The alphabet MSd graded, with degree given
by the polynomial degree of the associated monic polynomial, or equivalently by the
set size. Given any h ≥ 1 we use the shorthand notation Ad,h := (Ad)

≤h.
Two products can be defined on T (Ad): the shuffle and the quasi-shuffle

products. We define them here recursively. For any i, j ∈ MSd and w, v ∈ W(MSd),

w =ε w = w ε = ε w = w ε

w • i v • j =(w vj)•i+ (w • i v) • j

w • i v • j =(w vj) • i+ (w • i v) • j + (w v)•ij

(5)
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These relations define two commutative algebras on T (Ad) which are compatible with
the grading of T (Ad) given above (see [Hof00, Theorem 2.1] for a proof of this fact).
The tensor algebra T (Ad) can be further equipped with two structures of Hopf

algebras by introducing the deconcatenation coproduct δ : T (Ad) → T (Ad) ⊗ T (Ad)
and a matching counit η∗ : T (Ad) → K. For a word w = i1 • · · · • ik, let

δ(w) = ε⊗ w + w ⊗ ε+

k−1∑

l=1

i1 • · · · • il ⊗ il+1 • · · · • ik, η∗(w) :=

{
1 if w = ε ,
0 otherwise.

We define as well the reduced coproduct map δ̃ = δ − id⊗1 − 1 ⊗ id. This endows
(T (Ad), , δ) and (T (Ad), , δ) with graded Hopf algebra structures. We expect there
is no confusion between elements in T (V ) and T (V )⊗ T (V ).
These Hopf algebras were shown to be isomorphic. Explicit algebra morphisms

ΦH ,ΨH : T (Ad) → T (Ad) were constructed in [Hof00], which are inverses of each
other. Specifically, the maps ΦH and ΨH are the linear maps that act on words as
follows:

ΦH(w) :=
∑

α∈C(|w|)

1

α!
(w)α , ΨH(w) :=

∑

α∈C(|w|)

(−1)|w|−ℓ(α)

Πα
(w)α .(6)

For instance, we have the following identities

ΦH(1 • 2) =1 • 2+
1

2
12 , ΨH(1 • 2) = 1 • 2−

1

2
12 ,

ΦH(1 • 2 • 3) =1 • 2 • 3 +
1

2
12 • 3+

1

2
1 • 23 +

1

6
123 ,

ΨH(1 • 2 • 3) =1 • 2 • 3−
1

2
12 • 3−

1

2
1 • 23+

1

3
123 .

The map ΦH is a graded isomorphism from (T (Ad), , δ) to (T (Ad), , δ).
The adjoints of ΦH ,ΨH with respect to 〈−,−〉 are also explicitly described in [Hof00,

Section 4.2]. Specifically, Φ∗
H ,Ψ

∗
H : T ((Ad)) → T ((Ad)) are maps satisfying the following

identities

Φ∗
H(i1 • · · · • ik) := Φ∗

H(i1) • · · · • Φ
∗
H(ik) ,

Ψ∗
H(i1 • · · · • ik) := Ψ∗

H(i1) • · · · •Ψ
∗
H(ik) ,

Φ∗
H(i) :=

∑

n≥1

1

n!

∑

i1···in=i

i1 • · · · • in , Ψ∗
H(i) :=

∑

n≥1

(−1)n−1

n

∑

i1···in=i

i1 • · · · • in .

(7)
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for any i1, . . . , ik, i ∈ MSd. For instance, one has

Φ∗
H(12) =12 +

1

2
1 • 2+

1

2
2 • 1 , Ψ∗

H(12) = 12−
1

2
1 • 2−

1

2
2 • 1 ,

Φ∗
H(123) =123 +

1

2
12 • 3 +

1

2
13 • 2 +

1

2
23 • 1+

1

2
1 • 23

+
1

2
2 • 13 +

1

2
3 • 12 +

1

6
σ(1 • 2 • 3)

Ψ∗
H(123) =123−

1

2
12 • 3−

1

2
13 • 2−

1

2
23 • 1−

1

2
1 • 23

−
1

2
2 • 13−

1

2
3 • 12 +

1

3
σ(1 • 2 • 3) ,

where σ(1 • 2 • 3) = 1 • 2 • 3 + 2 • 1 • 3 + 3 • 2 • 1+ 1 • 3 • 2+ 2 • 3 • 1+ 3 • 1 • 2.
The Hopf algebras dual to (T (Ad), , δ) and (T (Ad), , δ) have the • product, and

have coproducts in T (V ) that we denote by δ , δ , respectively. These were given
explicitly in [Reu93]. In this way, Φ∗

H ,Ψ
∗
H are graded Hopf algebra isomorphism

between (T ((Ad)), •, δ ) and (T ((Ad)), •, δ ), see e.g. [BFPP22, Proposition 3.5].
The maps Φ,Ψ,Φ∗ and Ψ∗ are graded. Therefore, for any h ≥ 1 these maps restrict

to isomorphisms. For instance, Φ∗ is an isomorphism between (T≤h(Ad), •, δ ) and
(T≤h(Ad), •, δ ). We display these maps in Fig. 1, in the context of two important
subspaces of T ((Ad)), that we introduce in the next section.

3. Lie polynomials and group-like elements

In this section, we introduce two fundamental subsets of T≤h(Ad): the space of Lie
polynomials and the variety of group-like elements. These will play a role in under-
standing discrete signatures and, as the name suggests, these will form a pair of Lie
algebra L≤h(Ad) and Lie group G≤h(Ad).
We define the Lie bracket [−,−] : T≤h(Ad)⊗ T≤h(Ad) → T≤h(Ad) by setting

[v, w] := w •h v − w •h v ,

and extending it linearly. We define L≤h(Ad) as the smallest Lie subalgebra of T≤h(Ad)
containing Ad. Equivalently, L

≤h(Ad) is the space of iterated Lie brackets starting from
the finite dimensional vector space Ad,h or Ad. We refer to this Lie algebra as the set
of height-h Lie polynomials.
For a word w = e1 • · · · • ek, write u = e2 • · · · • ek and define inductively the following

Lie polynomials:

lw = [e1, lu] , lI = I , lε = 0(8)

Notice how L≤h(Ad) ∩Ad = Ad,h, so the principal elements of L≤h(Ad) are Ad,h, and
L≤h(Ad) is finitely generated. We will now show that any height-h Lie polynomial is
generated by the elements lw.
We introduce an intermediary Lie algebra Lh that sits between L≤h(Ad) and T ((V )).

Consider the Lie bracket without truncation on T ((V )):

[[v, w]] := w • v − w • v .
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The following is a Lie algebra

Lh := Ad,h ⊕ [[Ad,h,Ad,h]]⊕ · · · ⊕ [[Ad,h, [[Ad,h . . . , [[Ad,h,Ad,h]]
︸ ︷︷ ︸

h− 1 times

,

where we set that any iterated sequence of h brackets vanishes. This follows [FV10,
Definition 7.25] and is called the free h-step nilpotent Lie algebra. This intermediary
algebra allows us to write L≤h(Ad) as a quotient:

Proposition 3.1. The space L≤h(Ad) is a Lie algebra. It arises as a quotient of a Lie
algebra with a Lie ideal:

(9) L≤h(Ad) = Lh/
(
T>h(Ad) ∩ Lh

)
,

where L≤h(Ad) is defined above. Furthermore, one has the following identification

(10) L≤h(Ad) = {v ∈ T≤h
0 (Ad) : 〈v, u k〉 = 0 for all ||u||ht + ||k||ht ≤ h} .

As a consequence, by projecting onto T≤h(Ad) any basis of Lh one has a generating
set for L≤h(Ad). This gives us that {lw : ||w||ht ≤ h} is a generating set for L≤h(Ad).

Sketch of proof. We can use the fundamental property of Lh as a free h-step nilpotent
Lie algebra (see [FV10, Remark 7.26]). This gives us an explicit Lie algebra morphism
f : Lh → L≤h(Ad).
Degree considerations give us that this map f is surjective, and one can see that its

kernel is T>h(Ad) ∩ Lh, which concludes the quotient claim. The equation (10) follows
from [Reu93, Theorem 3.1]. �

For k ∈ K, let T≤h
k (Ad) := {v ∈ T≤h(Ad)|〈v, ε〉 = k}. We introduce the polynomial

maps
exp•h

: T≤h
0 (Ad) → T≤h

1 (Ad) and log•h : T≤h
1 (Ad) → T≤h

0 (Ad)

defined by

(11) exp•h
(v) :=

∑

n≥0

1

n!
v•h n , log•h(v) :=

∑

n≥0

(−1)n−1

n
(v − ε)•h n ,

where v•h n = v •h · · · •h v stands for the n-th bullet product. The following was shown
in [Reu93, Chapter 3]:

Proposition 3.2. For each w, the elements exp•h
(w) and log•h(w) are finite sums.

Moreover, exp•h
is surjective and log•h = exp−1

•h
.

We define the height-h free nilpotent Lie group G≤h(Ad):

G≤h(Ad) := exp•h
(L≤h(Ad)) ⊂ T≤h

1 (Ad) ,

which is a Lie group when endowed it with the operation •h. Let π
h : T ((Ad)) → T h(Ad)

be the canonical projection. To describe varieties of discrete signature we also introduce
the following set

Gh(Ad) := πh(G≤h(Ad)) .

The following is a consequence of Proposition 3.1, as well as some classical properties
of free Nilpoltent Lie algebras. See e.g. [Reu93, Theorem 3.2] for details on this.



8 DISCRETE SIGNATURE VARIETIES

Proposition 3.3. The elements of G≤h(Ad) are characterized by:

(12) G≤h(Ad) =
{

v ∈ T≤h
1 (Ad) : 〈v, w u〉 = 〈v, w〉〈v, u〉 for ||w||ht + ||u||ht ≤ h

}

.

Remark that these equations are all polynomial (quadratic) equations on the entries
of v.
We now introduce Chow theorem, which expresses elements of G≤h(Ad) as concate-

nation of simpler element.

Theorem 3.4 ([FV10, Theorem 7.28]). For any height h ≥ 1 and g ∈ G≤h(Ad) there
exists an integer m and v1, . . . , vm ∈ Ad,h such that

g = exp•h
(v1) •h · · · •h exp•h

(vm) .

L̂≤h(Ad) L≤h(Ad)

(Kd)N

Ĝ≤h(Ad) G≤h(Ad)

Φ∗
H

exp•h

Ψ∗
H

exp•h

S Φ∗
H

log•h

Ψ∗
H

log•h

Figure 1. The height h free Lie algebras and the height h Lie groups
are connected via Φ∗ and Ψ∗.

We now turn our attention to the quasi-shuffle relations, and define an analogous
space to the one presented inProposition 3.3, in the context. Note that this is the
variety of interest for this paper, as the signature of a time-series is an element of this
space, according to Theorem 4.4.

Definition 3.5. For any integer h ≥ 1 we define the height-h free quasi-shuffle Lie

group Ĝ≤h(Ad) and height-h quasi-shuffle Lie polynomials L̂≤h(Ad) as

Ĝ≤h(Ad) :=
{

v ∈ T≤h
1 (Ad) : 〈v, w u〉 = 〈v, w〉〈v, u〉 for all ||w||ht + ||u||ht ≤ h

}

,

L̂≤h(Ad) := log•h(Ĝ
≤h(Ad)) ⊂ T≤h

0 (Ad) .

Similarly as before, we introduce the set

Ĝh(Ad) := πh(Ĝ≤h(Ad)) .

Recall that ΦH and ΨH , defined in (6), and their adjoints, are Hopf algebra isomor-
phisms. In [Hof00, Theorem 4.2] and [BFPP22] it is shown that:

Proposition 3.6. The function Φ∗
H maps isomorphically Ĝ≤h(Ad) to G≤h(Ad) and

L̂≤h(Ad) to L≤h(Ad). The maps Φ∗
H ,Ψ

∗
H commute with exp•h

, log•h on these domains.
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Summing up the relation in a commutative diagram we can describe the properties
of Φ∗

H and Ψ∗
H in Figure 1 above.

We conclude the section by defining an explicit adjoint of log•h . These are the
truncated shuffle eulerian map and truncated quasi-shuffle eulerian map, the
maps e1 , e1 : T≤h(Ad) → T≤h(Ad) defined as

e1 =
∑

n≥1

(−1)n−1

n
◦(n−1) ◦δ̃◦(n−1) , e1 =

∑

n≥1

(−1)n−1

n
◦(n−1) ◦ δ̃◦(n−1) ,

where we use the convention that ◦(0) ◦ δ̃◦(0) = ◦(0) ◦ δ̃◦(0) is the projection from
T≤h(Ad) to εK. For instance, one has

e1 (ε) = e1 (ε) = 0 , e1 (i) = e1 (i) = i ,

e1 (i • j) =
1

2
(i • j− j • i) , e1 (i • j) =

1

2
(i • j− j • i) +

1

2
ij .

These two maps allow to compute the adjoint of log•h on group-like elements.

Proposition 3.7. Let v ∈ G≤h(Ad) and w ∈ Ĝ≤h(Ad). For any word w with ||w||ht ≤ h
one has:

〈log•h(v), w〉 =〈v, e1 (w)〉 ,

〈log•h(w), w〉 =〈w, e1 (w)〉 .
(13)

We use the following fact, called the duality between product and coproduct

associated to • and δ, without proof:

〈(v − ε)•hn, w〉 = 〈v⊗n, δ̃◦(n−1)w〉T (Ad)⊗n ,

Proof of Proposition 3.7. Using the duality above, and applying Proposition 3.3 we
have:

〈log•h(v), w〉 =
∑

n≥1

(−1)n−1

n
〈(v − ε)•hn, w〉 =

∑

n≥1

(−1)n−1

n
〈v⊗n, δ̃◦(n−1)w〉T (Ad)⊗n

=
∑

n≥1

(−1)n−1

n
〈v, ◦(n−1)δ̃◦(n−1)w〉

= 〈v,
∑

n≥1

(−1)n−1

n
◦(n−1) δ̃◦(n−1)w〉 = 〈v, e1 (w)〉 ,

which concludes one equality. The remaning follows via the same computations. �

4. Varieties of discrete signatures

In what follows we consider K to be an algebraically closed field. Fix integers d,N ≥ 1
and we consider time-series x = (x1, . . . , xN ) of elements in Kd. Denote ∆xi = xi+1−xi ∈
Kd. The discrete signature tensor in T ((Ad)) is given by

(14) 〈S(x), w〉 :=
∑

1≤i1<···<ik<N

e1(∆xi1) · · · ek(∆xik) ,
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for all w = e1 • · · · • ek ∈ W(MSd). A first observation is that the discrete signature of
a time-series x is invariant up to translations. We will therefore reparametrize (14) and
only consider the signature of y = ∆x, the difference time-series. We abuse notation
and set, for any word w = e1 • · · · • ek, that:

(15) 〈S(y), w〉 :=
∑

1≤i1<···<ik≤N

e1(yi1) · · · ek(yik) .

This reparametrisation allows for a more tractable computer assisted calculation, as it
reduces de input space of S. Crucially, the image of this map is still the same. We
will use the same notation for this reparametrisation. Giving h ≥ 1 we denote the
projection of the signature S(x) onto T≤h(Ad) by S

≤h(x), and denote the projection of
S(x) onto T h(Ad) by S

h(x).
We identify a time-series in (Kd)N with a d × N matrix in K. If x = (x1, . . . xN), we

identify x with a matrix whose i-th column is xi. So we have for example

S
≤2

([
1 2 3
2 3 2

])

= ε+6 1+ 7 2+ 14 11+ 14 12+ 17 22

+ 11 1 • 1 + 9 1•2+ 19 2•1+ 16 2 • 2 .

Definition 4.1 (The signature varieties and the universal variety). Fix d, h,N integers.
We define the discrete signature variety Vd,h,N to be the Zariski closure of the image

of Sh in T h(Ad).

Remark 4.2. Recall that we are considering K a algebraically closed field. Furthermore,
Vd,h,N is a homogeneous, so its projectivisation is Zariski closed (see [SR94, Section 5.2]).
This allows us to simply word with the image of the map from now on.

We observe that when using the new parametrisation, adding zero-columns to a
matrix does not change S

≤2. For instance we have:

S
≤2

([
1 0 2 3 0
2 0 3 2 0

])

= ε+6 1+ 7 2+ 14 11+ 14 12+ 17 22

+ 11 1•1+ 9 1•2+ 19 2•1+ 16 2 • 2 .

As a consequence, we have the following ascending chain of varieties

(16) Vd,h,0 ⊆ Vd,h,1 ⊆ Vd,h,2 ⊆ · · ·

we call Vd,h to the union of these varieties. These are varieties given by parametrisations,
therefore they are irreducible. According to the variety-ideal dictionary (see for instance
[CLO06]), these correspond to a descending chain of prime ideals.
The following fact is a consequence of Krull’s principal ideal theorem.

Proposition 4.3. A descending chain of prime ideals in a polynomial ring on finite
variables must stabilize.

Therefore, Vd,h = Vd,h,Nd,h
for some finite integer Nd,h. These are called the universal

varieties of the discrete signature. We explore universal varieties in Section 5.
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Theorem 4.4 (Quasi-shuffle relations). The signature of a time-series satisfies the
quasi-shuffle relations. That is, for any two words w, v in MSd we have

〈S(x), w v〉 = 〈S(x), w〉〈S(x), v〉 .

This means that S
h(x) ∈ Ĝh(Ad). In particular, Vd,h ⊆ Ĝh(Ad). This was shown in

[DET20, Theorem 3.4]. In Conjecture 5.1 we conjecture that this inclusion is tight.

4.1. The height one varieties. For completeness sake we include this case here. For
h = 1, the map S covers the height one component T 1(Ad). In this case there are no
relations, and for N ≥ 1, we have that Vd,1,N = Vd,1,1

∼= Kd.

4.2. The height two varieties. The first non-trivial quasi-shuffle relation arises at
height two. Specifically the rank of the following matrix is at most one:

[
Se(x)

2
Se(x) Sf(x)

Se(x) Sf(x) Sf(x)
2

]

.

This gives us the following equation on height two discrete signatures

(17) (2 Se•e + See) (2 Sf•f + Sff) = (Sef + Sf•e+ Se•f)
2 .

This equation determines Sf•e given Sef and Se•f , for e 6= f. In Section 5 we show
that, Ĝ2(Ad) is precisely the universal variety. By dimension counting, together with
Corollary 5.7 we get the following generator result:

Theorem 4.5. The quadratic equations given in (17) generate the variety Ĝh(Ad).
Furthermore, because the equations in (17) are all transversal, the degree of this variety

is 2(
d

2
).

4.3. Paths on the line. We now look at the case where d = 1. Here, Ad has a basis
element for each degree, and T h(Ad) has a basis element indexed by compositions of
h. Therefore, it has dimension 2h−1 for h ≥ 1. This is the ambient space of V1,h,N .
However, one can see that 〈Sd,N(x), w〉 is an evaluation of a quasi-symmetric function:

Example 4.6. First, we see w ∈ W(MS1) as compositions of ||w||ht. For instance, if
w = 11 • 1 • 11, we identify w with the composition (2, 1, 2) of 5.
Fix h,N integers, and let w ∈ W(MS1) be seen as a composition. Write Mw for the

monomial quasi-symmetric function indexed by the composition corresponding to w,
that is

M(α1,...,αk) =
∑

1≤i1<···<ik

xα1

i1
· · ·xαk

ik
,

Then 〈Sd,N(x), w〉 is the evaluation of Mw on x appended with zeroes.
For instance, if we consider w = 1•11, this corresponds to the composition α = (1, 2).

If x is the time-series (1, 4, 2, 3) in R
1, then

〈S(x), w〉 = M(1,2)(1, 4, 2, 3, 0, 0, 0, . . . ) = 1 · 42 + 1 · 22 + 1 · 32 + 4 · 22 + 4 · 32 + 2 · 32 .

We recall that [Haz01] has shown that QSym, the algebra of quasi-symmetric func-
tions, is freely generated over the integers, and indeed gives a generating set for this
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algebra. We add that this result is independent of the characteristic of K. A simple con-
sequence of this is that the dimension of our varieties of interest are the ones predicted
by Conjecture 5.1.

Proposition 4.7. The variety V1,h,N has the dimension expected in Conjecture 5.1.

We analyse here further particular cases with d = 1. For h = 3 and N = 3, the
signature variety is embedded in K4 and has dimension three: it is the image of the map
K3 → K4 explicitly given by

(a1, a2, a3) 7→ (a1a2a3, a1a1a2 + a1a1a3 + a2a2a3, a1a2a2 + a1a3a3 + a2a3a3, a1a2a3) .

Let us denote by (s00, s01, s10, s11) the coordinates of K
4. The variety V1,3,3 is generated

by one equation of degree nine, here is an excerpt of this equation:

81s900 + 162s800s01 + 351s700s
2
01 + 333s600s

3
01

+ 72s500s
4
01 − 63s400s

5
01 − 30s300s

6
01

+ 6s200s
7
01 + 6s00s

8
01 + s901 + 162s800s10 − 30s200s01s

6
10

+ · · ·+ 4s300s
2
10s

4
11 + 4s200s01s

2
10s

4
11 + s00s

2
01s

2
10s

4
11 .

For h = 4 and N = 3, the variety V1,4,3 is embedded in K8 and is generated by 20
polynomials, whose degree counts are the following:

Degree 1 2 3 4
Quantity 1 1 12 6

The degree one polynomial is s000, the degree two polynomial is:

s2001 + 2s001s010 + s2010 + 2s001s011 + 2s010s011 + s2011 + 2s001s100 + 2s010s100 + 2s011s100

+ s2100 − 4s001s101 − 4s010s101 − 4s100s101 − 2s2101 + 2s001s110 + 2s010s110 + 2s011s110

+ 2s100s110 + s2110 − 2s001s111 − 2s010s111 − 2s100s111 − s101s111 .

4.4. Three steps. Let us now focus on N = 3, d = 2 and h = 3. To write out the
parametrization of V2,3,3, we rename some coordinates of A2,3 as follows:

• For w = e1•e2•e3, we write se1,e2,e3 for 〈S(x), w〉.
• For w = e1e2•e3, we write te1,e2,e3 for 〈S(x), w〉.
• For w = e1•e2e3, we write ue1,e2,e3 for 〈S(x), w〉.
• For w = e1e2e3, we write ve1,e2,e3 for 〈S(x), w〉.

If x =

[
a1 b1 c1
a2 b2 c2

]

, then

si,j,k =aibjck

ti,j,k =aiajbk + aiajck + bibjck

ui,j,k =aibjbk + aicjck + bicjck

vi,j,k =aiajak + bibjbk + cicjck .

Proposition 4.8. There are 226 minimal generators of I(V2,3,3) of degree at most four.
These break down into 58 quadrics, 74 cubic and 134 quartic generators.
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We present code for this fact in [BP23]. Here is one of the cubics generating I(V2,3,3).

s121s222v222 − s121t222u222 − s122s222v122 + s122t222u212

− s221s222v122 + s221t122u222 + s2222v112 − s222t122u212 .

5. Universal varieties

This section relates to a conjecture measuring the difference between the universal
variety and Ĝh(Ad), as well as some consequences of this. Specifically, this conjecture

guarantees that S
h : (Kd)N → Ĝ(Ad) maps surjectively to Ĝh(Ad), when taking N

sufficiently large.
In this section we outline a proof strategy for this conjecture. This strategy entails

showing that many elements of Ad are so called reachable. We show that for length at
most two, the reachablility conditions are satistied. We display the equations necessary
to solve the reachability problem for length three.
In the rest of this section we present some important consequences of this conjecture.

Specifically, we present some dimension results and an enumeration result.

Conjecture 5.1. The universal variety Vd,h is precisely Ĝh(Ad).

5.1. The dimension conjecture. The following definition and lemma outline a strat-
egy for showing Conjecture 5.1. Recall from Eq. (8) that for a word w = e1 • · · · • ek,
we write the corresponding Lie polynomial as lw.

Definition 5.2. Fix d, h,N and an element v ∈ Ad of degree at most h. We say that
v is (d, h,N)-reachable if there is a time-series x ∈ (Kd)N that satisfies the following
equations for all words w such that ||w||ht ≤ h and |w| ≥ 2, and monomials I ∈ MSd of
degree at most h:

〈S(x), I〉 = 〈v, I〉

〈S(x),ΦHe1 (lw)〉 = 0 .

Lemma 5.3. A given v ∈ Ad is (d, h,N)-reachable if and only if there is a time-series
x ∈ (Kd)N such that

log•h Φ
∗
H S

≤h(x) = v .

Proof. We first observe that log•h Φ
∗
H S

≤h(x) = v if and only if 〈Φ∗
H log• S(x), b〉 =

〈v, b〉 for all b running over a generating set of L≤h(Ad). We use the set described in

Proposition 3.1. By using the fact that S(x) ∈ Ĝ(Ad), Proposition 3.6 tells us that
Φ∗

H S(x) ∈ G(Ad) so Proposition 3.7 gives us

〈log•Φ
∗
H S(x), lw〉 =〈Φ∗

H S(x), e1 (lw)〉

=〈S(x),ΦHe1 (lw)〉 .

We obtain the desired equations once we note that whenever |w| = 1, e1 lw = w.
Furthermore, the map ΦHe1 is graded, so 〈v,ΦHe1 (w)〉 = 0 for |w| > 1. �

We call the equations in Definition 5.2 the reachability equations. These are split
into levels according to the length of w. In this way, the reachability equations of
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level k correspond to all equations where w words have length k. For instance, the
reachability equations of lenght 1 are the non-homogeneous equations. Our strategy is
to show that all v of degree at most h are reachable: the following lemma establishes
that this is enough to infer Conjecture 5.1.

Lemma 5.4. Assume that there exists some N such that any v ∈ Ad of degree at most
h is (d, h,N)-reachable. Consider S

≤h as a map S
≤h : (Kd)m → Ĝ≤h(Ad). Then, for

some integer m, we have im S
≤h = Ĝ≤h(Ad).

If a ∈ (Kd)N , b ∈ (Kd)M are two time-series, we denote its concatenation by a|b. Specif-
ically, it denotes the times-series in Kd with M +N vectors resulting from appending b
to a. For the proof of this lemma we use the following fact without proof:

Lemma 5.5. We have:
S(a|b) = S(a) • S(b) ,

where we are using the parametrisation described in Eq. (15).

Proof of Lemma 5.4. Assume that for each v =
∑

I∈MSd
vII of degre at most h there

exists a time-series x = x(v) in (Kd)N such that log•h Φ
∗
H S

≤h(x) = v. Theorem 3.4

guarantees that there exists some integer m such that for any w ∈ G≤h(Ad) we can find
v1, . . . , vm ∈ Ad satisfying

w = exp•h
(v1) •h · · · •h exp•h

(vm) .

Consider the time-series x = x(v1)| · · · |x(vm) in (Kd)mN . Then Lemma 5.5, together
with the fact that Φ∗

H is an algebra homomorphism (see Eq. (7)) gives us:

Φ∗
H S

≤h(x) = Φ∗
H S

≤h(x(v1)) •h · · · •h Φ
∗
H S

≤h(x(vm)) = w .

This shows that the map Φ∗
H ◦ S

≤h is surjective. Because Φ∗
H is an isomorphism, we

have that S≤h is surjective, as desired. �

Lemma 5.6. Assume that K is algebraically closed, and fix d, h integers. There exists
an N such any v ∈ Ad of degree at most h is (d, h,N)-reachable. That is, for any v we
can find a time-series that satisfies the reachability equations in Definition 5.2 of length
at most two.

Corollary 5.7. Conjecture 5.1 holds for h = 2.

Proof of Lemma 5.6. We argue as follows: First we construct a time-series x = x(v)
that satisfies the equations of length one. That is, for any element v ∈ Ad of degree at
most h, the time-series satisfies

〈S(x), I〉 = 〈v, I〉 for all I monomial.

This concludes the level one. From these solutions we construct solutions to the level
two reachability equations, which are amenable to algebraic manipulations on the level
one. This allows us to construct the desired solution.
Let us find the time-series x(v) for each v by a dimension argument. Let U be a basis

of Ad,h. Let Y be the variety in KU given by the image of the following map from Kd:

~x 7→ (p(~x))p∈U .
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This is an irreducible variety. Say it has dimension e. Fix N = ⌈|U|/e⌉. The linear

relations
∑N

j=1 x
i
j = vi for i ∈ U trace out an affine space L of codimention |U| in

KN . Given that Y N has dimension eN ≥ |U|, and since Y N is not contained in any
hyperplane, the intersection L∩Y N is non-empty. The time series x in this intersection
space is the desired x(v).
To establish the equations on level two, for a time series a let a be the reversed-time

time-series of a. Then, we show that for any time-series a, the time-series g(a) = a|a
satisfies the equations of height two, while having an amenable level one result, that is:

〈S(g(a)), I〉 = 2deg I〈S(a), I〉 for all I monomial.

〈S(g(a)),Φ∗
He1 (lw)〉 = 0 for all w of length two.

It follows that g(2−1v) satisfies the desired equations, and the lemma is proven. �

5.2. Length three equations. We remark that the map e1 is a projection in L(Ad)
for any element of L≤h(Ad) of length one, two and three. This is why the equations
of level one and two, as well as the equations of level three, as we will see below, are
tractable. However, it is not true that e1 is the identity in L(Ad), and counter examples
arise for level four and above.

Example 5.8 (The level three reachability equations). Here we present Definition 5.2
for w = 1 • 2 • 3 and w = 12 • 3 • 4, which is a generic element of length three. That
is, we compute Φ∗

He1 (lw). From the same token as in Lemma 5.6, finding a time-series
that has

〈S(x),Φ∗
He1 (lw)〉 = 0 ,

implies Conjecture 5.1 for h = 3.
From the remark above we have that e1 (lw) = lw. Therefore, by using the examples

given after Eq. (7) we get:

For w = 1 • 2 • 3

Φ∗
He1 (lw) =Φ∗

H(lw)

=Φ∗
H(1 • 2 • 3− 1 • 3 • 2− 2 • 3 • 1+ 3 • 2 • 1)

=1 • 2 • 3− 1 • 3 • 2− 2 • 3 • 1+ 3 • 2 • 1 = lw .

For w = 12 • 3 • 4

Φ∗
He1 (lw) =Φ∗

H(lw)

=Φ∗
H(12 • 3 • 4− 12 • 4 • 3− 3 • 4 • 12 + 4 • 3 • 12)

=(12 +
1

2
1 • 2 +

1

2
2 • 1) • 3 • 4− (12 +

1

2
1 • 2 +

1

2
2 • 1) • 4 • 3

− •3 • 4 • (12 +
1

2
1 • 2+

1

2
2 • 1) + •4 • 3 • (12 +

1

2
1 • 2 +

1

2
2 • 1)

=lw +
1

2
(l12•3•4 + l12•3•4) .

A general equation was, however, not found.
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5.3. Dimension results. The following is a direct corollary from Conjecture 5.1.

Corollary 5.9. For any d, h ≥ 1, we have dimVd,h =
∑

l≤h λd,l.

Proof. We follow the strategy laid out in [AFS19, Section 6]. Specifically, we show

tha the projection on T h(Ad), denoted by πh is a generically h-to-1 map on Ĝ≤h(Ad),
showing that

(18) dim πh(Ĝ≤h(Ad)) = dim Ĝh(Ad) .

To show that πh is generically h-to-1, let v ∈ Ĝh(Ad) such that 〈v, 1 h〉 6= 0, and write

v =
∑

w∈W(MSd)
||w||ht=h

αww .

If v = πh(w) for w ∈ Ĝ≤h(Ad), then

〈w, 1〉h = 〈w, 1 h〉 = 〈v, 1 h〉 ,

because all elements in 1 h have heigth h. This equation determines a non-zero value
for 〈w, 1〉 up to an h-root of unity of 1.
Now for any w of height l < h, note that

〈v, w 1 h−l〉 = 〈w, w 1 h−l〉 = 〈w, w〉〈w, 1〉h−l .

This determines
〈w, w〉 = 〈v, w 1 h−l〉/〈w,1〉h−l

We conclude that for v in an open set of Ĝh(Ad), there are h many values of w that
map to v. This concludes the proof of (18).
Now in [MR89] it was shown that for any vector space V , there is a basis of L≤h(V )

given by Lyndon words, of heigth at most h, on the basis of V . Furthermore, it can
be seen from the definition in Eq. (11) that exp•h

is locally a diffeomorphism, and
Proposition 3.6 gives us that Ψ∗

H is an isomorphism of vector spaces. Thus, dimen-

sion is preserved, dim Ĝ≤h(Ad) = dimL≤h(Ad) =
∑

l≤h λd,l. This, together with (18),
concludes the proof. �

5.4. Enumerative considerations. The dimension of the universal variety dimVd,h

arises as the number of Lyndon words with a specific height. The tilting of the usual
grading on word algebras with the introduction of a degree function is uncommon in
the study of Lyndon words. For instance, Lyndon words arise in the study of words on
the alphabet {1, . . . , d}, taken with the degree function constant equal to one. There,
words of length h correspond to words of height h. Therefore, the number of Lyndon
words of height h in such alphabets is given (see [Reu93, Section 0] ) by

µd,h =
1

h

∑

k|h

µ

(
h

k

)

dk ,

where µ is the Möbius function on integers. This reflects the fact that the height and
the length play the same role for this alphabet. In the context of discrete signatures,
we do not have the luxury of having the same height and length on most words.
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Theorem 5.10. The number of Lyndon words in W(MSd) of heigth h is

λd,h =
∑

k|h

k

h
µ

(
h

k

)
∑

α|=k

1

ℓ(α)

∏

i

(
αi + d− 1

d− 1

)

.

This formula deserves some coments. It is somewhat surprising that this always yields
integer values. However, it is a corollary of the proof below that the intermediary terms

k
∑

α|=k

1

ℓ(α)

∏

i

(
αi + d− 1

d− 1

)

are also integers.

Proof. First we note that the height grading on T (V ) gives us the following power series

H(x) =
∑

w∈W(MSd)

xht(w) =
1

1−
∑

I∈MSd
xdeg(I)

.

Furthermore, for h ≥ 1 there are
(
h+d−1
d−1

)
multisets on {1, . . . , d} size h, so

∑

I∈MSd

xdeg(I) =
∑

k≥1

(
k + d− 1

d− 1

)

xk = (1− x)−d − 1 ,

so we have H(X) = [1− ((1− x)−d − 1)]−1.
On the other hand, the Lyndon unique factorization theorem (see [CFL58])

guarantees that each word w ∈ W(MSd) can be written uniquely as

w = τ1 • · · · • τj ,

where τi are Lyndon words with τ1 ≥lex · · · ≥lex τk. Therefore

H(x) =
∑

w∈W(MSd)

xht(w) =
∏

τ Lyndon word
τ∈W(MSd)

(
1 + xht(τ) + x2ht(τ) + x3ht(τ) + · · ·

)

=
∏

τ Lyndon word
τ∈W(MSd

(1− xht(τ))−1 =
∏

k≥1

(1− xk)−λd,k ,

where we recall that λd,k is the number of Lyndon words τ ∈ W(MSd) of length k.
Putting it together, applying log on both sides and using

− log(1− f(x)) =
∑

n≥1

1

n
f(x)n ,
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we get

− log(H(x)) =
∑

k≥1

−λd,k log(1− xk) =
∑

j,k≥1

1

j
xjkλd,k =

=
∑

n≥1

xn
∑

k|n

1

n/k
λd,k =

∑

n≥1

1

n
xn
∑

k|n

kλd,k

− log(H(x)) = − log[1− ((1− x)−d − 1)] =

=
∑

k≥1

1

k

(
∑

t≥1

(
t+ d− 1

d− 1

)

xt

)k

=
∑

n≥0

xn
∑

α|=n

1

ℓ(α)

∏

i

(
αi + d− 1

d− 1

)

Equating both sides it follows that for each n we have

∑

k|n

kλd,k = n
∑

α|=n

1

ℓ(α)

∏

i

(
αi + d− 1

d− 1

)

.

Summing both sides for all n divisors of h and multiplying by µ
(
h
n

)
we get throught

Möbius inversion that

hλd,h =
∑

n|h

n µ

(
h

n

)
∑

α|=n

1

ℓ(α)

∏

i

(
αi + d− 1

d− 1

)

,

from which the theorem follows. �

This allows us to create the following values of λd,h. Code created to generate this
table can be found in [BP23].

h 1 2 3 4 5 6 7 8 9
d = 1 1 1 2 3 6 9 18 30 56
d = 2 2 4 12 31 92 256 772 2291 7000
d = 3 3 9 36 132 534 2140 8982 38031 164150
d = 4 4 16 80 380 1960 10228 55352 304223 1700712
d = 5 5 25 150 875 5500 35335 234530 1584845 10885640
d = 6 6 36 252 1743 12936 98686 776412 6226008 50732712
d = 7 7 49 392 3136 26852 237160 2158156 20028764 188856934

6. Further work

• Given an element S ∈ Ĝ(Ad), can we compute all posible time-series of a fixed

size that have S(x) = S? This is related with the degree of the variety Ĝ(Ad),
which is not easy to compute in full generality.

• Does the dimension change when the field characteristic is non-zero?
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