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Abstract

We prove that the number of tropical critical points of an affine matroid (M, e) is equal to
the beta invariant of M . Motivated by the computation of maximum likelihood degrees, this
number is defined to be the degree of the intersection of the Bergman fan of (M, e) and the
inverted Bergman fan of N = (M/e)⊥, where e is an element of M that is neither a loop nor a
coloop. Equivalently, for a generic weight vector w on E − e, this is the number of ways to find
weights (0, x) on M and y on N with x+ y = w such that on each circuit of M (resp. N), the
minimum x-weight (resp. y-weight) occurs at least twice. This answers a question of Sturmfels.

1 Introduction

During the Workshop on Nonlinear Algebra and Combinatorics from Physics at the Center for
the Mathematical Sciences and Applications at Harvard University in April 2022, Bernd Sturmfels
[Stu22] posed one of those combinatorial problems that is deceivingly simple to state, but whose
answer requires a deeper understanding of the objects at hand.

Conjecture 1.1. [Stu22] Let M be a matroid on E, and let e ∈ E be an element that is neither a
loop nor a coloop. Let M/e be the contraction of M by e and let N = (M/e)⊥ be its dual matroid.

1. (Combinatorial version) Given a vector w ∈ RE−e, we wish to find weight vectors (0, x) ∈ RE

on M (where e has weight 0) and y ∈ RE−e on N such that

• on each circuit of M , the minimum x-weight occurs at least twice,

• on each circuit of N , the minimum y-weight occurs at least twice, and

• w = x+ y.

For generic w, the number of solutions is the beta invariant β(M).

2. (Geometric version) The degree of the stable intersection of the Bergman fan Σ(M,e) and the
inverted Bergman fan −ΣN is

deg(Σ(M,e) · −Σ(M/e)⊥) = β(M) .

The goal of this paper is to prove this conjecture.
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Theorem 1.2. Versions 1. and 2. of Conjecture 1.1 are true.

The affine matroid (M, e) is the matroid M with a special chosen element e. The Bergman fan
of (M, e) is the Bergman fan of M intersected with the hyperplane xe = 0. The other relevant
definitions are given in Section 2.3. The combinatorial and geometric formulations of Conjecture 1.1
are equivalent because in the stable intersection above, all intersection points have multiplicity 1
[ABF+21, Lemma 7.4].
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Figure 1: A graph G, its contraction G/0, and its dual H = (G/0)⊥.

Agostini, Brysiewicz, Fevola, Kühne, Sturmfels, and Telen [ABF+21] first encountered (a special
case of) Conjecture 1.1 in their study of the maximum likelihood estimation for linear discrete
models. Using algebro-geometric results of Huh and Sturmfels [HS14], which built on earlier work
of Varchenko [Var95], they proved Theorem 1.2 for matroids realizable over the real numbers. In
a related setting of linear Gaussian models, the maximum likelihood degrees were shown to be
matroid invariants of the linear subspace [SU10, EFSS21].

We prove Theorem 1.2 for all matroids. Following the original motivation, we call the solutions
to Conjecture 1.1.1 the tropical critical points of the affine matroid; our main result is that they
are counted by Crapo’s beta invariant β(M). We do something stronger. Agostini et. al. write

“we would like to describe the multivalued map that takes any tropical data vector w
to the set of its critical points”. [ABF+21, Section 7]

We give an explicit formula for this map for all w that are rapidly increasing, under any order <
on the ground set E.

In Section 3 we prove Theorem 1.2.1 combinatorially, relying on the tropical geometric fact
that the number of solutions is the same for all generic w. We show that when the entries of w
are rapidly increasing with respect to some order < on E, the solutions to Conjecture 1.1.1 are
naturally in bijection with the β-nbc bases of the matroid with respect to <. It is known that the
number of such bases is the beta invariant of the matroid, regardless of the order <.

In Section 4 we sketch a proof of Theorem 1.2.2 that relies the theory of tautological classes of
matroids of Berget, Eur, Spink, and Tseng [BEST21]. This proof is not combinatorial; it relies on
computations in the equivariant Chow ring of the permutahedral variety initiated in [BEST21] and
extended here.

Remark 1.3. Since Theorem 1.2.2 was established for matroids realizable over R in [ABF+21],
one may attempt to give yet another proof of Theorem 1.2.2 via the following property of matroid
valuations [DF10]: If two functions f(M) and g(M) coincide for matroids realizable over R, and
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if the functions f(−) and g(−) are valuative under matroid subdivisions, then f(M) and g(M)
coincide in general. The right-hand-side of Theorem 1.2.2, the beta invariant β(M), is valuative
[AFR10]. For the left-hand-side however, while the maps M 7→ Σ(M,e) and M 7→ −Σ(M/e)⊥ are
each valuative, products of valuative functions are in general not valuative. Thus, it is a priori
unclear why the map f :M 7→ deg(Σ(M,e) · −Σ(M/e)⊥) is valuative.

An earlier version of this paper incorrectly sought to establish the valuativity of f via torus-
equivariant methods in [BEST21, Section 5]. More precisely, it stated that the valuativity of the

map f follows from the valuativity of the map ψ : {Matroids on E} → Z2E × Z2E given by M 7→
(⟨E \ Bσ(M)⟩, ⟨Bσ(M/e)⟩), but this is false. The correct map ψ to derive the valuativity of f in

the context should have been {Matroids on E} → Z2E×2E given by M 7→ ⟨E \ Bσ(M), Bσ(M/e)⟩,
but this corrected ψ map is in fact not valuative. We do not know any argument that establishes
the valuativity of the left-hand-side of Theorem 1.2.2 independently of the theorem.

2 Notation and preliminaries

2.1 The lattice of set partitions

A set partition λ of a set E is a collection of subsets, called blocks, of E, say λ = {λ1, . . . , λℓ},
whose union is E and whose pairwise intersections are empty. We write λ |= E. We let |λ| = ℓ be
the number of blocks of λ. If e ∈ E and λ |= E, we write λ(e) for the block of λ that contains e.

We define the linear space of a set partition λ = {λ1, . . . , λℓ} |= E to be

L(λ) := span{eλ1 , . . . , eλℓ
} ⊆ RE

= {x ∈ RE |xi = xj whenever i, j are in the same block of λ},

where {ei : i ∈ E} is the standard basis of RE and eS =
∑

s∈S es for S ⊆ E. Notice that
dim L(λ) = |λ|. The map λ 7→ L(λ) is a bijection between the set partitions of E and the flats
of the braid arrangement, which is the hyperplane arrangement in RE given by the hyperplanes
xi = xj for i ̸= j in E.

If e ∈ E then we write L(λ)|xe=0 = {x ∈ RE−e : (0, x) ∈ L(λ) ⊆ RE}.

2.2 The intersection graph of two set partitions

The following construction from [AE21] will play an important role.

Definition 2.1. Let λ |= [0, n] and µ |= [n] be set partitions. The intersection graph Γ = Γλ,µ

is the bipartite graph with vertex set λ ⊔ µ and edge set [n], where the edge labelled e connects the
parts λ(e) of λ and µ(e) of µ containing e. The vertex λ(0) is marked with a hollow point.

The intersection graph may have several parallel edges connecting the same pair of vertices.
Notice that the label of a vertex in Γ is just the set of labels of the edges incident to it. Therefore
we can remove the vertex labels, and simply think of Γ as a bipartite multigraph on edge set [n].
This is illustrated in Figure 2.

Lemma 2.2. Let λ |= [0, n] and µ |= [n] be set partitions and Γλ,µ be their intersection graph.

1. If Γλ,µ has a cycle, then L(λ)|x0=0 ∩ (w − L(µ)) = ∅ for generic1 w ∈ Rn.

1This means that this property holds for all w outside of a set of measure 0.
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Figure 2: The intersection graph of λ = {6, 59, 2, 013478} |= [0, 9] and µ = {9, 8, 7, 46, 3, 125} |= [9].
We omit brackets for legibility. Left: The vertices are labelled by the blocks of the set partitions.
Right: The edges are labelled by the elements of [9].

2. If Γλ,µ is disconnected, then L(λ)|x0=0 ∩ (w − L(µ)) is not a point for any w ∈ Rn.

3. If Γλ,µ is a tree, then L(λ)|x0=0 ∩ (w − L(µ)) is a point for any w ∈ Rn.

Proof. Let x ∈ L(λ) and y ∈ L(µ) such that x + y = w. Write xλ(i) := xi and yµ(j) := yj for
simplicity. The subspace L(λ)|x0=0 ∩ (w − L(µ)) is cut out by the equalities

xλ(i) + yµ(i) = wi for i ∈ [n],

xλ(0) = 0.

This system has n + 1 equations and |λ| + |µ| unknowns. The linear dependences among these
equations are controlled by the cycles of the graph Γλ,µ. More precisely, the first |E| linear func-
tionals {xλ(i)+yµ(i) : i ∈ [n]} give a realization of the graphical matroid of Γλ,µ. The last equation
is clearly linearly independent from the others.

If Γλ,µ has a cycle with edges i1, i2, . . . , i2k in that order, then the above equalities imply
that wi1 − wi2 + wi3 − · · · − wi2k = 0. For a generic w, this equation does not hold, so we have
L(λ)|x0=0 ∩ (w − L(µ)) = ∅.

If Γλ,µ is disconnected, let A be the set of edges in a connected component not containing the
vertex λ(0). If x ∈ L(λ) and y ∈ L(µ) satisfy x + y = w and x0 = 0, then x + reA ∈ L(λ) and
y− reA ∈ L(µ) also satisfy those equations for any real number r. Therefore L(λ)|x0=0∩ (w−L(µ))
is not a point.

Finally, if Γλ,µ is a tree, then its number of vertices is one more than the number of edges,
that is, n + 1 = |λ| + |µ|, so the system of equations has equally many equations and unknowns.
Also, these equations are linearly independent since Γλ,µ is a tree. It follows that the system has
a unique solution.

When Γλ,µ is a tree, we call λ and µ an arboreal pair.

Lemma 2.3. Let λ |= [0, n] and µ |= [n] be an arboreal pair of set partitions and let Γλ,µ be their
intersection tree. Let w ∈ Rn. The unique vectors x ∈ L(λ) and y ∈ L(µ) such that x+ y = w and
x0 = 0 are given by

xλi
= we1 − we2 + · · · ± wek where e1e2 . . . ek is the unique path from λi to λ(0)

yµj = wf1 − wf2 + · · · ± wfl where f1f2 . . . fl is the unique path from µj to λ(0)
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for any i and j.

Proof. This follows readily from the fact that, for each 1 ≤ i ≤ k, the values of xλ(ei) and yµ(ei) on
the vertices incident to edge i have to add up to wei .

Example 2.4. Let λ = {6, 59, 2, 013478} |= [0, 9] and µ = {9, 8, 7, 46, 3, 125} |= [9]. These set
partitions form an arboreal pair, as evidenced by their intersection tree, shown in Figure 2. We
have, for example, y9 = w9 − w5 + w1 because the path from µ(9) = {9} to λ(0) = {013478} uses
edges 9, 5, 1 in that order. The remaining values are:

x6 = w6 − w4, x59 = w5 − w1, x2 = w2 − w1, x13478 = 0,

y9 = w9 − w5 + w1, y8 = w8, y7 = w7, y46 = w4, y3 = w3, y1235 = w1.

The tropical critical points of a matroid are better behaved for the following family of vectors.

Definition 2.5. A vector w ∈ Rn+1 is rapidly increasing if wi+1 > 3wi > 0 for 1 ≤ i ≤ n.

The next lemma is readily verified.

Lemma 2.6. Let w be rapidly increasing. For any 1 ≤ a < b ≤ n+1 and any choice of ϵis and δis
in {−1, 0, 1}, we have wa +

∑a−1
i=1 ϵiwi < wb +

∑b−1
j=1 δjwj .

Definition 2.7. Given a rapidly increasing vector w ∈ Rn+1 and a real number x, we will say x
is near wi and write x ≈ wi if wi − (w1 + · · · + wi−1) ≤ x ≤ wi + (w1 + · · · + wi−1). Note that if
x ≈ wi and y ≈ wj for i < j then x < y.

2.3 Matroids, Bergman fans, and tropical geometry

In what follows we will assume familiarity with basic notions in matroid theory; for definitions and
proofs, see [Oxl06, Wel76]. We also state here some facts from tropical geometry that we will need;
see [MS15, MR10] for a thorough introduction.

Let M be a matroid on E of rank r + 1. The dual matroid M⊥ is the matroid on E whose set
of bases is {B⊥ |B is a basis of M}, where B⊥ := E−B. The following lemma is useful to how M
and M⊥ interact; see [ADH22, Lemma 3.14] and [Oxl06, Proposition 2.1.11] for proofs.

Lemma 2.8. If F is a flat of M and G is a flat of M⊥, then |F ∪G| ≠ |E| − 1.

Definition 2.9. [Cra67] The beta invariant of M is defined to be β(M) := |χ′
M (1)|, where χM is

the characteristic polynomial of M :

χM (t) :=
∑
X⊆E

(−1)|X|tr(M)−r(X).

Definition 2.10. Fix a linear order < on M . A broken circuit is a set of the form C − min<C
where C is a circuit of M . An nbc-basis of M is a basis of M that contains no broken circuits. A
βnbc-basis of M is an nbc-basis B such that B⊥ ∪ 0 \ 1 is an nbc-basis of M⊥.

Theorem 2.11. [Zie92] For any linear order < on E, the number of βnbc-bases of M is equal to
the beta invariant β(M).
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For each basis B = {b1 > · · · > br > br+1} of the matroid M , we define the complete flag of
flats

FM (B) := {∅ ⊊ clM{b1} ⊊ clM{b1, b2} ⊊ · · · ⊊ clM{b1, . . . , br} ⊊ E}.
The following characterization of nbc-bases will be useful.

Lemma 2.12. [Bjö92, (7.30), (7.31)] Let M be a matroid of size n+ 1 and rank r + 1, and B a
basis of M . Then B is an nbc-basis of M if and only if bi = minFi for i = 1, . . . , r + 1.

An affine matroid (M, e) on E is a matroid M on E with a chosen element e ∈ E [Zie92].

Definition 2.13. [Stu02] The Bergman fan of a matroid M on E is

ΣM = {x ∈ RE | min
c∈C

xc is attained at least twice for any circuit C of M} .

The Bergman fan of an affine matroid (M, e) on E is

Σ(M,e) = {x ∈ RE−e | (0, x) ∈ ΣM} = ΣM |xe=0.

Remark 2.14. The Bergman fan contains the lineality space 1R. Taking the quotient by this
space, or intersecting with a coordinate linear hyperplane will give the same result, and typically
the (projective) Bergman fan is defined in the quotient vector space RE/1R in the literature.

The motivation for this definition comes from tropical geometry. A subspace V ⊂ RE determines
a matroid MV on E, and the tropicalization of V is precisely the Bergman fan of MV . Similarly,
an affine subspace W ⊂ RE−e determines an affine matroid (MW , e) on E, where e represents the
hyperplane at infinity. The tropicalization of W is the Bergman fan Σ(MW ,e).

Theorem 2.15. [AK06] The Bergman fan of a matroid M is equal to the union of the cones

σF = cone(eF1 , . . . , eFr+1) + R1
= {x ∈ RE |xa ≥ xb whenever a ∈ Fi and b ∈ Fj for some 1 ≤ i ≤ j ≤ r + 1}

for the complete flags F = {∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fr ⊊ Fr+1 = E} of flats of M . It is a tropical
fan with weights w(F) = 1 for all F .

If Σ1 and Σ2 are tropical fans of complementary dimensions, then Σ1 and v + Σ2 intersect
transversally at a finite set of points for any sufficiently generic vector v ∈ Rn. Furthermore, each
intersection point p is equipped with a multiplicity w(p) that depends on the respective intersecting
cones, in such a way that the quantity

deg(Σ1 · Σ2) :=
∑

p∈Σ1∩(v+Σ2)

w(p)

is constant for generic v [MR10, Proposition 4.3.3, 4.3.6]; this is called the degree of the intersection.
In all the tropical intersections that arise in this paper, it was verified in [ABF+21, Lemma

7.4] that the multiplicity index ω(p) is 1. This also follows readily from the fact that every such
intersection comes from an arboreal pair λ, µ by Lemma 2.2, as explained in the next section.
Therefore the degree of the intersection will be simply the number of intersection points:

deg(Σ(M,e) · −Σ(M/e)⊥) = |Σ(M,e) ∩ (v − Σ(M/e)⊥)|

for generic v ∈ RE−e. This explains the equivalence of the two versions of Conjecture 1.1 and
Theorem 1.2.
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3 Proof of the main theorem via basis activities

Let M be a matroid on [0, n] of rank r + 1 such that 0 is not a loop nor a coloop. Then M/0 has
rank r, and N = (M/0)⊥ has rank n− r. For any basis B of M containing 0, B⊥ = [0, n]−B is a
basis of N = (M/0)⊥. Conversely, every basis of N equals B⊥ for a basis B of M containing 0.

Let us construct an intersection point in Σ(M,0) ∩ (w − ΣN ) for each β-nbc basis of M .

Lemma 3.1. Let M be a matroid on E = [0, n] of rank r + 1 such that 0 is not a coloop, and let
N = (M/0)⊥. Let w ∈ Rn be rapidly increasing. For any β-nbc basis B of M , there exist unique
vectors (0, x) ∈ σFM (B) and y ∈ σFN (B⊥) such that x+ y = w.

Proof. First we show that the set partitions π of F = FM (B) and π⊥ of F⊥ = FN (B⊥) form an
arboreal pair. Since they have sizes |B| = r + 1 and |B⊥| = n − r, respectively, their intersection
graph has n+1 vertices and n edges. Therefore it is sufficient to prove that the intersection graph
Γπ,π⊥ is connected; this implies that it is a tree.

Assume contrariwise, and let A be a connected component not containing the edge 1. Let a > 1
be the smallest edge in A. Then a is the smallest element of its part π(a) in π, and since B is
nbc in M , this implies a ∈ B. Similarly, since B⊥ is nbc in N , this also implies a ∈ B⊥. This is a
contradiction.

It follows from Lemma 2.2 that there exist unique (0, x) ∈ L(π) and y ∈ L(π⊥) such that
x+ y = w. It remains to show that (0, x) ∈ σF and y ∈ σF⊥ .

Lemma 2.3 provides formulas for x and y in terms of the paths from the various vertices of the
tree of Γπ,π⊥ to π(0). To understand those paths, let us give each edge e an orientation as follows:

π(e) −→ π⊥(e) if minπ(e) > minπ⊥(e),

π(e)←− π⊥(e) if minπ(e) < minπ⊥(e).

We never have minπ(e) = minπ⊥(e), because as above, that would imply e ∈ B ∩B⊥.
We claim that every vertex other than π(0) has an outgoing edge under this orientation. Con-

sider a part πi ̸= π(0) of π; let minπi = b. Edge b connects πi = π(b) to π⊥(b) ∋ b, and we cannot
have minπ⊥(b) > b = minπ(b), so we must have πi → π⊥(b). The same argument works for any
part π⊥j of π⊥.

Now, since B is an nbc basis of M , every element b ∈ B is minimum in π(b), so there is a
directed path that starts at π(b) and can only end at π(0), and its first edge is b. Furthermore,
by the definition of the orientation, the labels of the edges decrease along this path. Thus in
the alternating sum xb = wb ± · · · given by Lemma 2.3, the first term dominates, and xb ≈ wb.
Similarly, since B⊥ is an nbc basis of N , yc ≈ wc for all c ∈ B⊥.

Therefore, if we write B = {b1 > · · · > br > br+1 = 0}, since w is rapidly increasing, it
follows that xb1 > xb2 > · · · > xbr > xbr+1 = 0, so indeed (0, x) ∈ σF . Similarly, if we write
B⊥ = E − B = {c1 > · · · > cn−r > cn−r+1 = 1}, then yc1 > yc2 > · · · > ycn−r+1 , so y ∈ σF⊥ . The
desired result follows.

Example 3.2. The graphical matroid M of the graph G in Figure 1 has six β-nbc bases: 0256,
0257, 0259, 0368, 0378, 0379. Let us compute the intersection point in Σ(M,0)∩(w−ΣN ) associated
to 0257 for the rapidly increasing vector w = (100, 101, . . . , 108) ∈ R9.
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For B = 0257, we have B⊥ = 134689. The flags they generate in M and N are

FM (B) = {∅ ⊊ 7 ⊊ 57 ⊊ 2457 ⊊ 0123456789}
FN (B⊥) = {∅ ⊊ 9 ⊊ 89 ⊊ 689 ⊊ 46789 ⊊ 346789 ⊊ 123456789},

which give rise to the corresponding set compositions

π = 7|5|24|013689, π⊥ = 9|8|6|47|3|125.

This is indeed an arboreal pair, as evidenced by their intersection graph in Figure 3.

9 8 6 7 4 3 5 2 1

Figure 3: The intersection graph of π = 7|5|24|13689 and π⊥ = 9|8|6|47|3|125.

Lemma 3.1 gives us the unique points (0, x) ∈ Fπ and y ∈ Fτ such that x + y = w; they are
given by the paths to the special vertex π(0) in the intersection tree Γπ,π⊥. For example x7 =
106 − 103 + 101 − 100 = 999009 and y4 = 103 − 101 + 100 = 991 are given by the paths 7421 and
421 from π(7) = π1 and π⊥(7) = π⊥4 to π(0), respectively. In this way we obtain:

x = 0 9 0 9 9999 0 999009 0 0
y = 1 1 100 991 1 100000 991 10000000 100000000
w = 1 10 100 1000 10000 100000 1000000 10000000 100000000

and x ∈ Σ(M,0) ∩ (w−ΣN ). We invite the reader to record the weights (0, x) and y in the graphs G
and H of Figure 1, and verify that in each cycle the minimum weight appears at least twice.

Conversely, the following lemma shows that any intersection point between Σ(E,e) and v − ΣN

is of the form constructed in Lemma 3.1; that is, it comes from a β-nbc basis.

Lemma 3.3. Let M be a matroid on E = [0, n] of rank r + 1, such that 0 is not a loop nor a
coloop, and N = (M/0)⊥. Let w ∈ Rn be generic and rapidly increasing. Let

F = {∅ = F0 ⊊ F1 ⊊ · · · ⊊ Fr ⊊ Fr+1 = E}
G = {∅ = G0 ⊊ G1 ⊊ · · · ⊊ Gn−r−1 ⊊ Gn−r = E − 0}

be complete flags of the matroids M and N , respectively, such that Σ(M,0) and w−ΣN intersect at

σF and w− σG. Then there exists a β-nbc basis B of M such that F = FM (B) and G = FN (B⊥).

Proof. By Lemma 2.2, the set compositions π and τ of F and G form an arboreal pair. In particular,
πa∩τb = (Fa−Fa−1)∩(Gb−Gb−1) cannot have more than one element for any a and b. We proceed
in several steps.
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1. Our first step will be to show that in the intersection tree Γπ,τ , the top right vertex πr+1

contains 0 and 1, the bottom right vertex τn−r contains 1, and thus the edge 1 connects these two
rightmost vertices.

Each Gi is a flat of N = M⊥ − 0, so G•
i := clM⊥(Gi) ∈ {Gi, Gi ∪ 0} is a flat of M⊥. Consider

the flag of flats of M⊥

G• := {∅ = G•
0 ⊊ G•

1 ⊊ · · · ⊊ G•
n−r−1 ⊊ G•

n−r = E},

where G•
n−r = E because 0 is not a coloop of M⊥ and G•

0 = ∅ because 0 is not a loop of M⊥. Let
m be the minimal index such that 0 ∈ G•

m, so

G• := {∅ = G0 ⊊ G1 ⊊ · · · ⊊ Gm−1 ⊊ Gm ∪ 0 ⊊ · · · ⊊ Gn−r−1 ∪ 0 ⊊ Gn−r ∪ 0 = E},

Consider the unions of the flat Fr with the coflats in G•; let j be the index such that

Fr ∪G•
j−1 ̸= E, Fr ∪G•

j = E

The former cannot have size |E| − 1 because it is the union of a flat and a coflat. Therefore
(Fr ∪G•

j )− (Fr ∪G•
j−1) = (E −Fr)∩ (G•

j −G•
j−1) has size at least 2. But F and G are arboreal so

πr+1 ∩ τj = (E − Fr) ∩ (Gj −Gj−1) has size at most 1. This has two consequences:

a) G•
j = Gj ∪ 0 and G•

j−1 = Gj−1, that is, j = m.

b) 0 ∈ E − Fr = πr+1.

Similarly, consider the unions of the coflat G•
n−r−1 with the flats in F ; let i be the unique index

such that
Fi−1 ∪G•

n−r−1 ̸= E, Fi ∪G•
n−r−1 = E.

An analogous argument shows that (Fi−Fi−1)∩(E−G•
n−r−1) has size at least 2, whereas πi∩τn−r =

(Fi − Fi−1) ∩ (E − 0−Gn−r−1) has size at most 1. This has three consequences:

c) G•
n−r−1 = Gn−r−1, that is, m = n− r.

d) 0 ∈ Fi − Fi−1, which in light of b) implies that i = r + 1.

e) (Fi−Fi−1)∩ (E−0−Gn−r−1) = πr+1∩τn−r = {e} for some element e ∈ E−0. But e ∈ πr+1

means that xe = 0 is minimum among all xis for any (0, x) ∈ σF , and e ∈ τn−r means that ye is
minimum among all yis for any y ∈ σG . Since w = x + y for some such x and y, we = xe + ye is
minimum among all wis, and since w is rapidly increasing, e = 1.

It follows that in the intersection tree Γπ,τ , the top right vertex πr+1 contains 0 and 1 by d)
and e), the bottom right vertex τn−r contains 1 by e), and thus 1 connects them.

2. Next we claim that for any path in the tree Γπ,τ that ends with the edge 1, the first edge
has the largest label.2 Assume contrariwise, and consider a containment-minimal path P that does
not satisfy this property; its edges must have labels satisfying e < f > f2 > · · · > fk sequentially.
If edge e goes from π(e) to τ(e), Lemma 2.3 gives xe = we − wf ± (terms smaller than wf ) ≈
−wf < 0 = x1, contradicting that (0, x) ∈ σF . If e goes from τ(e) to π(e), we get ye = we − wf ±
(terms smaller than wf ) ≈ −wf < w1 = y1, contradicting that y ∈ σG .

2This implies that the edge labels decrease along any such path, but we will not use this in the proof.
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3. Now define

bi := min(Fi − Fi−1) for i = 1, . . . , r + 1,

cj := min(Gj −Gj−1) for j = 1, . . . , n− r.

Then B := {b1, . . . , br+1} and C := {c1, . . . , cn−r} are bases of M and N , and F = FM (B) and
G = FN (C). We claim that B is β-nbc and C = B⊥.

To do so, we first notice that the path from vertex πi = Fi − Fi−1 (resp. τj = Gj − Gj−1) to
edge 1 must start with edge bi (resp. cj): if it started with some larger edge b′ ∈ Fi − Fi−1, then
the path from edge bi to edge 1 would not start with the largest edge. This has two consequences:

f) The sets B and C are disjoint. If we had bi = cj = e, then edge e, which connects vertices
πi = Fi − Fi−1 and τj = Gj − Gj−1, would have to be the first edge in the paths from both of
these vertices to edge 1; this is impossible in a tree. We conclude that B and C are disjoint. Since
|B| = r + 1 and |C| = n− r, we have C = B⊥.

g) For each i we have xbi ≈ wbi , because the path from τi to vertex 0 – which is the path from
τi to edge 1, with edge 1 possibly removed – starts with the largest edge bi, so Lemma 2.3 gives
xbi = wbi ± (smaller terms) ≈ wbi . Similarly yci ≈ wci . Now, (0, x) ∈ σF gives xb1 > · · · > xbr+1 ,
which implies wb1 > · · · > wbr+1 , which in turn gives

b1 > · · · > br > br+1; and analogously, c1 > · · · > cn−r−1 > cn−r = 1.

The former implies that B is nbc in M by Lemma 2.12. The latter, combined with c), implies that
c1 > · · · > cn−r−1 > 0 respectively are the minimum elements of the flatsG•

1, . . . , G
•
n−r−1, G

•
n−r = E

that they sequentially generate, so C ∪ 0 \ 1 = B⊥ ∪ 0 \ 1 is nbc in M⊥. It follows that B is β-nbc
in M .

We conclude that B is β-nbc in M , F = FM (B), and G = FN (B⊥), as desired.

Proof of Theorem 1.2.1. This follows by combining the previous two lemmas.

4 Proof of the main theorem via torus-equivariant geometry

In this section we give a proof of Theorem 1.2.2 using the framework of tautological classes of
matroids of Berget, Eur, Spink, and Tseng. See [BEST21] for details on what follows. Recall that
M is a matroid on E of rank r + 1

In this framework, one works with the Chow ring of the permutohedral fan ΣE , which is the
Bergman fan of the Boolean matroid on E. Its set of maximal cones is in bijection with the set SE

of permutations of E. Let S = Z[ti : i ∈ E]; we can think of it as the ring of polynomials on RE

with integer coefficients. Then SSE is the ring of |E|!-tuples of polynomials in S, one polynomial
fσ for each permutation σ of E, or equivalently, one polynomial fσ on each chamber σ of ΣE .

The Chow ring A•(ΣE) of ΣE has the following description.

Definition 4.1. Let A•
T (ΣE) be the subring of SSE defined by

A•
T (ΣE) = {continuous piecewise polynomials with integer coefficients supported on ΣE}

=

{
(fσ)σ∈SE

∈ SSE

∣∣∣∣ for any σ, σ′ ∈ SE, the polynomials fσ and fσ′

agree as functions on σ ∩ σ′ ⊆ RE

}
.
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Let I be the ideal of A•
T (ΣE) generated by the global polynomials {(fσ)σ∈SE

: fσ = fσ′ for all σ ∈ SE}.
Then

A•(ΣE) = A•
T (ΣE)/I.

One can associate to the fans Σ(M,e) and −Σ(M/e)⊥ certain elements [Σ(M,e)] and [−Σ(M/e)⊥ ]

of A•(ΣE) as follows. First, per Remark 2.14, the fan ΣE in RE has lineality space 1R, and the
quotient fan ΣE/1R is unimodularly isomorphic to the affine braid fan ΣE,e = ΣE |xe=0 in RE−e,
whose |E|! chambers correspond to the possible orders of {xf : f ∈ E− e}∪{0}. This is the affine
Bergman fan of the Boolean matroid with special element e.

Then, the fans Σ(M,e) and −Σ(M/e)⊥ are subfans of ΣE,e, and they are tropical fans in the sense
that they satisfy the balancing condition (see for instance [AHK18, Definition 5.1]). Via the theory
of Minkowski weights [FS97], they consequently define elements [Σ(M,e)] and [−Σ(M/e)⊥ ] of the Chow
ring A•(ΣE). Moreover, the ring A•(ΣE) is equipped with a degree map degΣE

: A•(ΣE) → Z,
which agrees with the map deg in Theorem 1.2 in the sense that

deg(Σ(M,e) ∩ −Σ(M/e)⊥) = degΣE
([Σ(M,e)] · [−Σ(M/e)⊥ ]).

For a survey of these facts, see [Huh18, Section 4], [AHK18, Section 5], or [BEST21, Section 7.1].

We now describe how [BEST21] provided a distinguished representative in A•
T (ΣE) of the class

[Σ(M,e)] ∈ A•(ΣE) = A•
T (ΣE)/I, and similarly for the class [−Σ(M/e)⊥ ]. For a matroid M on

E, consider the following elements of the rings A•
T (ΣE) and A•(ΣE), modeled after the geometry

of torus-equivariant vector bundles from realizable matroids. For each permutation σ ∈ SE , let
Bσ(M) be the lexicographically first basis of M with respect to the ordering σ(1) < · · · < σ(n) of
the ground set.

Definition 4.2. [BEST21, Definition 3.9] Let M be a matroid of rank r + 1 on a ground set E
of size n+ 1. Its torus-equivariant tautological Chern classes are the elements {cTi (S∨M )}i=0,...,r+1

and {cTj (QM )}j=0,...,n−r in A•
T (ΣE) defined by

cTi (S∨M )σ = the i-th elementary symmetric polynomial in {tk : k ∈ Bσ(M)} and

cTj (QM )σ = the j-th elementary symmetric polynomial in {−tℓ : ℓ ∈ E \Bσ(M)}

for any permutation σ ∈ SE. Their images in the quotient A•(ΣE), denoted ci(S∨M ) and cj(QM ),
are called the tautological Chern classes of M .

[BEST21, Proposition 3.8] shows that these elements are well-defined. The results of [BEST21]
yield the following representatives in A•

T (ΣE) of the elements [Σ(M,e)] and [−Σ(M/e)⊥ ] ∈ A•(ΣE).
Let M/e⊕ U0,e be the matroid on E obtained from M/e by adding back the element e as a loop.
This matroid has rank r.

Lemma 4.3. Let M be a matroid of rank r + 1 on a ground set E of size n+ 1. Define elements
[Σ(M,e)]

T and [−Σ(M/e)⊥ ]
T in A•

T (ΣE) by [Σ(M,e)]
T = cTn−r(QM ) and [−Σ(M/e)⊥ ]

T = cTr (S∨M/e⊕U0,e
),

or explicitly,

[Σ(M,e)]
T
σ =

∏
i∈E\Bσ(M)

(−ti) and [−Σ(M/e)⊥ ]
T
σ =

∏
i∈Bσ(M/e⊕U0,e)

ti for all σ ∈ SE .

Then, their images in the quotient A•(ΣE) are exactly [Σ(M,e)] and [−Σ(M/e)⊥ ], respectively.
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Proof. The first equality is a restatement of [BEST21, Theorem 7.6] when one notes that the choice
of e ∈ E induces an isomorphism RE/R(1, . . . , 1) ≃ RE−e. The second statement also follows from
that theorem when one combines it with [BEST21, Propositions 5.11, 5.13], which describe how
tautological Chern classes behave with respect to matroid duality and direct sums, respectively.

Proof of Theorem 1.2.2. We begin with [BEST21, Theorem 6.2] which states that

degΣE

(
[Σ(M,e)] · cr(S∨M )

)
= β(M).

Thus, the desired statement degΣE
([Σ(M,e)] · [−Σ(M/e)⊥ ]) = β(M) will follow once we show that

[Σ(M,e)] ·
(
cr(S∨M )− [−Σ(M/e)⊥ ]

)
= 0 in A•(ΣE).

Towards this end, we look at the distinguished representative of this product in A•
T (ΣE), and

show that the variable te divides [Σ(M,e)]
T
σ ·

(
cTr (S∨M )σ − [−Σ(M/e)⊥ ]

T
σ

)
for any σ ∈ SE , as follows.

� If e /∈ Bσ(M), then [Σ(M,e)]
T
σ =

∏
i∈E\Bσ(M)

(−ti) is divisible by te.

� If e ∈ Bσ(M), then Bσ(M/e⊕ U0,e) = Bσ(M) \ e, and hence

cTr (S∨M )σ − [−Σ(M/e)⊥ ]
T
σ = Elemr({tk : k ∈ Bσ(M))−

∏
j∈Bσ(M)\e

tj

=
∑

i∈Bσ(M)

( ∏
j∈Bσ(M)\i

tj

)
−

∏
j∈Bσ(M)\e

tj

=
∑

i∈Bσ(M)\e

( ∏
j∈Bσ(M)\i

tj

)
is divisible by te.

This means that [Σ(M,e)]
T ·

(
cTr (S∨M ) − [−Σ(M/e)⊥ ]

T
)
is a multiple of the global polynomial te,

and hence is in the ideal I of Definition 4.1. Therefore [Σ(M,e)] ·
(
cr(S∨M )− [−Σ(M/e)⊥ ]

)
= 0 in the

quotient A•(ΣE), as desired.
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