The discrete signature Veronese variety Probabilistic methods, Signatures, Cubature and Geometry

Raul Penaguiao

MPI MiS Leipzig

9th January, 2023

Slides can be found at raulpenaguiao.github.io/ Joint work with Carlo Belingeri and Bernd Sturmfels.

Path signatures

Given a (C^1) path $\mathbf{X} : [0,1] \to \mathbb{R}^d$, we can define its (continuous) signature $\sigma^{(k)} \in \mathcal{T}^k(\mathbb{R})$:

$$\sigma_{\omega_1\ldots\omega_k}(\mathbf{X}) = \int_{0 < t_1 < \cdots < t_k < 1} X'_{\omega_1}(t_1) \cdots X'_{\omega_k}(t_k) d\mathbf{t} \,,$$

defined for $\omega_i \in \{1, \ldots, d\}$. These satisfy the **shuffle relations**:

$$\sigma_{\omega}(\mathbf{X})\sigma_{\tau}(\mathbf{X}) = \sum_{\alpha \in \omega \sqcup \tau} \sigma_{\alpha}(\mathbf{X}) \,.$$

Example: $\sigma_1(\mathbf{X})^2 = 2\sigma_{11}(\mathbf{X})$.

Discrete path signatures

Given a sequence of vectors $\mathbf{X} = (\mathbf{X}^0, \dots, \mathbf{X}^N) \in (\mathbb{R}^d)^{N+1}$, we can define its (discrete) signatures:

$$\boldsymbol{\mathcal{S}}_{p_1,\ldots,p_k}(\mathbf{X}) = \sum_{1 \le t_1 < \cdots < t_k \le N} p_1(\mathbf{X}^{t_1} - \mathbf{X}^{t_1-1}) \cdots p_k(\mathbf{X}^{t_k} - \mathbf{X}^{t_k-1}),$$

defined for p_i non-constant monomials in $\{x_1, \ldots, x_d\}$.

Discrete path signatures

$$\mathbf{X} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix}, N = 3, d = 2.$$

 $p_1 = x_1 x_2$ and $p_2 = x_1$ so $k = 2.$

$$\boldsymbol{\mathcal{S}}_{p_1,\ldots,p_k}(\mathbf{X}) = \sum_{1 \le t_1 < \cdots < t_k \le N} p_1(\mathbf{X}^{t_1} - \mathbf{X}^{t_1-1}) \cdots p_k(\mathbf{X}^{t_k} - \mathbf{X}^{t_k-1}),$$

$$\begin{split} \boldsymbol{\mathcal{S}}_{p_1,p_2}(\mathbf{X}) = & p_1(\mathbf{X}^1 - \mathbf{X}^0) p_2(\mathbf{X}^2 - \mathbf{X}^1) + p_1(\mathbf{X}^1 - \mathbf{X}^0) p_2(\mathbf{X}^3 - \mathbf{X}^2) \\ &+ p_1(\mathbf{X}^2 - \mathbf{X}^1) p_2(\mathbf{X}^3 - \mathbf{X}^2) \\ = & 2 \times (-1) \times 0 + 2 \times (-1) \times 1 + 0 \times 0 \times 1 = -2 \,. \end{split}$$

 $\mathbf{X} \in (\mathbb{R}^d)^{N+1} \to \mathbf{X} \in (\mathbb{R}^d)^{N+1} \qquad (p_1, p_2) \to 12|1$

Raul Penaguiao (MPI MiS Leipzig)

Recovering paths

Tree-like excursions \rightarrow Time warping Recovering paths from signature was done by Pfeffer, Seigal and Sturmfels

- Inverse problem: given a signature of a polynomial path, what is the specific path that we started with?
- Optimal path with a given signature (minimal distance covered, etc.)

This should all be possible in the discrete world.

Introduction

2 Shuffle relations

4 Small cases

Where do discrete signatures live

For d = 2 and $h \leq 3$, we have the following $\mathcal{I}_{d,h}$

$$\mathcal{I}_{2,1} = \{1,2\}$$

$$\mathcal{I}_{2,2} = \{11, 12, 22, 1|1, 1|2, 2|1, 2|2\}$$

$$\begin{split} \mathcal{I}_{2,3} = & \{ 111, 112, 122, 222, 1 | 11, 1 | 12, 1 | 22, 2 | 11, 2 | 12, 2 | 22, 11 | 1, 11 | 2, 12 | 1, \\ & 12 | 2, 22 | 1, 22 | 2, 1 | 1 | 1, 1 | 12, 1 | 2 | 1, 1 | 2 | 2, 2 | 1 | 1, 2 | 1 | 2, 2 | 2 | 1, 2 | 2 | 2 \} \end{split}$$

$\#\mathcal{W}_{d,h}$	h = 1	h=2	h = 3
d=2	2	7	24
d = 3	3	15	73
d = 4	4	26	164

Shuffle relations \rightarrow quasi-shuffle relations.

$$\boldsymbol{\mathcal{S}}_{\omega}(\mathbf{X})\boldsymbol{\mathcal{S}}_{\tau}(\mathbf{X}) = \sum_{\alpha \in \omega \overline{\sqcup} \tau} \sigma_{\alpha}(\mathbf{X}).$$

Example: $S_{x_1}(\mathbf{X})S_{x_2}(\mathbf{X}) = S_{x_1,x_2}(\mathbf{X}) + S_{x_2,x_1}(\mathbf{X}) + S_{x_1x_2}(\mathbf{X}).$

Quasi-shuffle

$$\begin{split} \boldsymbol{\mathcal{S}}_{x_1}(\mathbf{X}) \boldsymbol{\mathcal{S}}_{x_2}(\mathbf{X}) &= \left(\sum_{1 \le i \le N} x_1(\mathbf{X}^i)\right) \left(\sum_{1 \le i \le N} x_2(\mathbf{X}^i)\right) \\ &= \sum_{1 \le i, j \le N} \mathbf{X}_1^i \mathbf{X}_2^j \\ &= \sum_{1 \le i < j \le N} \mathbf{X}_1^i \mathbf{X}_2^j + \sum_{1 \le j < i \le N} \mathbf{X}_1^i \mathbf{X}_2^j + \sum_{1 \le i \le N} \mathbf{X}_1^i \mathbf{X}_2^i \\ &= \boldsymbol{\mathcal{S}}_{x_1, x_2}(\mathbf{X}) + \boldsymbol{\mathcal{S}}_{x_2, x_1}(\mathbf{X}) + \boldsymbol{\mathcal{S}}_{x_1 x_2}(\mathbf{X}) \end{split}$$

Extra term comes from measure zero diagonals.

The varieties - continuous case

 $\mathcal{W}_d = \{1, \ldots, d\}.$ $\mathcal{W}_{d,k}$ the set of words of length k on the characters \mathcal{W}_d . The variety $\mathcal{U}_{d,k,N}$ is the closure of the image of $\sigma^{(k)}$ on **polynomial** paths of degree N. In this way, $\mathcal{U}_{d,k,N} \subset \mathbb{R}^{\mathcal{W}_{d,k}} = \mathcal{T}^{(k)}(\mathbb{R}^d).$

$$\mathcal{U}_{d,k,1} \subset \mathcal{U}_{d,k,2} \subset \cdots$$

Let $\mathcal{U}_{d,k}$ be the limit of this chain.

Theorem (Améndola, Friz and Sturmfels 2020)

 $\mathcal{U}_{d,n}$ is precisely the image of the closure of $\sigma^{(k)}$.

The varieties

 \mathcal{M}_d the set of non-constant monomials on $\{x_1, \ldots, x_d\}$. \mathcal{I}_d the set of words in \mathcal{M}_d . Height of a word $\vec{p} = (p_1, \ldots, p_k)$ in \mathcal{M}_d

$$h(\vec{p}) = \sum_{i} \deg p_i \,.$$

Do not mistake **height** of a word with its **lenght**, generally smaller. $\mathcal{I}_{d,h}$ the set of words in \mathcal{M}_d of height h. The variety $\mathcal{V}_{d,h,N}$ is the closure of the image of $\boldsymbol{\mathcal{S}} : (\mathbb{R}^d)^N \to \mathbb{R}^{\mathcal{I}_{d,h}}$. In this way, $\mathcal{V}_{d,h,N} \subset \mathbb{R}^{\mathcal{I}_{d,h}}$.

$$\mathcal{V}_{d,h,1}\subset\mathcal{V}_{d,h,2}\subset\cdots$$
 .

Let $\mathcal{V}_{d,n}$ be the limit of this chain.

Some dimension considerations

Theorem (Hoffman 2000)

Shuffle algebra and quasi-shuffle algebra are isomorphic via an exponential map.

Theorem (Améndola, Friz and Sturmfels 2019)

The dimension of $U_{d,n}$ is $\lambda_{d,n} - 1$, where $\lambda_{d,n}$ is the number of Lyndon words on d characters of length at most n.

Theorem (Belingeri, P. and Sturmfels 2023)

The dimension of $V_{d,h}$ is $\mu_{d,n} - 1$, where $\mu_{d,n}$ is the number of Lyndon words on \mathcal{M} of height at most h.

$\#\mathcal{W}_{d,h}$	h = 1	h=2	h = 3
d = 2	2	7	24
d = 3	3	15	73
d = 4	4	26	164
$\mu_{d,h}$	h = 2	h = 3	h = 4
$\begin{array}{ c c }\hline \mu_{d,h} \\ \hline d=2 \end{array}$	h = 2 2	h = 3 4	h = 4 12
$ \begin{array}{c} \mu_{d,h} \\ d = 2 \\ d = 3 \end{array} $	h = 2 2 3	h = 3 4 9	h = 4 12 36

Some degree considerations

The degree of $\mathcal{V}_{d,h}$ is related with the **number of solutions** of an inverse problem.

Figure: A paraboloid, degree two and dimension three variety. Credit to Krishnavedala - Wikipedia

Theorem (Bounds on the degree of this variety) *Coming soon!*

Small cases

We can compute **dimension and degree** of $\mathcal{V}_{d,h,n}$ using **Macaulay2**.

dim	$V_{2,2,2}$	$V_{2,2,3}$	$V_{2,3,2}$	$V_{2,3,3}$
dim	2	4	4	(?)
deg	2	8	27	(?)

Biblio

- Améndola, Carlos, Peter Friz, and Bernd Sturmfels. "Varieties of signature tensors." Forum of Mathematics, Sigma. Vol. 7. Cambridge University Press, 2019.
- Galuppi, Francesco. "The rough Veronese variety." Linear algebra and its applications 583 (2019): 282-299.
- Diehl, Joscha, Ebrahimi-Fard, Kurusch, and Tapia, Nikolas. "Time-warping invariants of multidimensional time series." Acta Applicandae Mathematicae 170.1 (2020): 265-290.

Thank you

